Dropout Regularization

video-placeholder
Loading...
Ver programa

Destrezas que aprenderás

Tensorflow, Deep Learning, Mathematical Optimization, hyperparameter tuning

Reseñas

4.9 (61,425 calificaciones)

  • 5 stars
    88,22 %
  • 4 stars
    10,60 %
  • 3 stars
    1 %
  • 2 stars
    0,11 %
  • 1 star
    0,05 %

XG

30 de oct. de 2017

Thank you Andrew!! I know start to use Tensorflow, however, this tool is not well for a research goal. Maybe, pytorch could be considered in the future!! And let us know how to use pytorch in Windows.

JS

4 de abr. de 2021

Fantastic course and although it guides you through the course (and may feel less challenging to some) it provides all the building blocks for you to latter apply them to your own interesting project.

De la lección

Practical Aspects of Deep Learning

Discover and experiment with a variety of different initialization methods, apply L2 regularization and dropout to avoid model overfitting, then apply gradient checking to identify errors in a fraud detection model.

Impartido por:

  • Placeholder

    Andrew Ng

    Instructor

  • Placeholder

    Kian Katanforoosh

    Senior Curriculum Developer

  • Placeholder

    Younes Bensouda Mourri

    Curriculum developer

Explora nuestro catálogo

Inscríbete de manera gratuita y obtén recomendaciones personalizadas, actualizaciones y ofertas.