Review of gradient ascent

Once familiar with linear classifiers and logistic regression, you can now dive in and write your first learning algorithm for classification. In particular, you will use gradient ascent to learn the coefficients of your classifier from data. You first will need to define the quality metric for these tasks using an approach called maximum likelihood estimation (MLE). You will also become familiar with a simple technique for selecting the step size for gradient ascent. An optional, advanced part of this module will cover the derivation of the gradient for logistic regression. You will implement your own learning algorithm for logistic regression from scratch, and use it to learn a sentiment analysis classifier.

Videos recomendados

Acerca de Coursera

Courses, Specializations, and Online Degrees taught by top instructors from the world's best universities and educational institutions.

Join a community of 40 million learners from around the world
Earn a skill-based course certificate to apply your knowledge
Gain confidence in your skills and further your career