Graph-Based Perspective on Variable Elimination

Loading...
Ver programa

Destrezas que aprenderás

Inference, Gibbs Sampling, Markov Chain Monte Carlo (MCMC), Belief Propagation

Revisiones

4.6 (370 calificaciones)
  • 5 stars
    257 ratings
  • 4 stars
    84 ratings
  • 3 stars
    20 ratings
  • 2 stars
    3 ratings
  • 1 star
    6 ratings
LL

Mar 12, 2017

Thanks a lot for professor D.K.'s great course for PGM inference part. Really a very good starting point for PGM model and preparation for learning part.

YP

May 29, 2017

I learned pretty much from this course. It answered my quandaries from the representation course, and as well deepened my understanding of PGM.

De la lección
Variable Elimination
This module presents the simplest algorithm for exact inference in graphical models: variable elimination. We describe the algorithm, and analyze its complexity in terms of properties of the graph structure.

Impartido por:

  • Daphne Koller

    Daphne Koller

    Professor

Explora nuestro catálogo

Inscríbete de manera gratuita y obtén recomendaciones personalizadas, actualizaciones y ofertas.