Build a Regression Model using PyCaret

ofrecido por
Coursera Project Network
En este proyecto guiado, tú:

build an end-to-end Regression model using PyCaret

Learn how to interpret a Regression model

Clock2 hours
BeginnerPrincipiante
CloudNo se necesita descarga
VideoVideo de pantalla dividida
Comment DotsInglés (English)
LaptopSolo escritorio

In this 1-hour long project-based course, you will create an end-to-end Regression model using PyCaret a low-code Python open-source Machine Learning library. The goal is to build a model that can accurately predict the strength of concrete based on several fatures. You will learn how to automate the major steps for building, evaluating, comparing and interpreting Machine Learning Models for regression. Here are the main steps you will go through: frame the problem, get and prepare the data, discover and visualize the data, create the transformation pipeline, build, evaluate, interpret and deploy the model. This guided project is for seasoned Data Scientists who want to build a accelerate the efficiency in building POC and experiments by using a low-code library. It is also for Citizen data Scientists (professionals working with data) by using the low-code library PyCaret to add machine learning models to the analytics toolkit In order to be successful in this project, you should be familiar with Python and the basic concepts on Machine Learning Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que desarrollarás

  • Python Programming
  • Machine Learning
  • PyCaret
  • regression

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Introduction and setup of the environnement

  2. Load and Prepare Data

  3. Explore Data

  4. Preprocess Data

  5. Build Regression Model

  6. Evaluate Model

  7. Interpret and Explain the final Model

  8. Deploy Model

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Preguntas Frecuentes

Preguntas Frecuentes

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.