Cleaning and Exploring Big Data using PySpark

4.2
estrellas
41 calificaciones
ofrecido por
Coursera Project Network
2712 ya inscrito
En este proyecto guiado, tú:

Learn how to clean your big dataset in PySpark

Learn how to explore big dataset in PySpark

Learn how to create visualizations from big dataset loaded in PySpark

Clock2 hours
IntermediateIntermedio
CloudNo se necesita descarga
VideoVideo de pantalla dividida
Comment DotsInglés (English)
LaptopSolo escritorio

By the end of this project, you will learn how to clean, explore and visualize big data using PySpark. You will be using an open source dataset containing information on all the water wells in Tanzania. I will teach you various ways to clean and explore your big data in PySpark such as changing column’s data type, renaming categories with low frequency in character columns and imputing missing values in numerical columns. I will also teach you ways to visualize your data by intelligently converting Spark dataframe to Pandas dataframe. Cleaning and exploring big data in PySpark is quite different from Python due to the distributed nature of Spark dataframes. This guided project will dive deep into various ways to clean and explore your data loaded in PySpark. Data preprocessing in big data analysis is a crucial step and one should learn about it before building any big data machine learning model. Note: You should have a Gmail account which you will use to sign into Google Colab. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que desarrollarás

  • Cleaning
  • Python Programming
  • Data Visualization (DataViz)
  • Apache Spark
  • Exploratory Data Analysis

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Install Spark on Google Colab and load datasets in PySpark

  2. Change column datatype, remove whitespaces and drop duplicates

  3. Remove columns with Null values higher than a threshold

  4. Group, aggregate and create pivot tables

  5. Rename categories and impute missing numeric values

  6. Create visualizations to gather insights

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Reseñas

Principales reseñas sobre CLEANING AND EXPLORING BIG DATA USING PYSPARK

Ver todas las reseñas

Preguntas Frecuentes

Preguntas Frecuentes

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.