Compare Models with Experiments in Azure ML Studio

Log plots in experiments
Log numeric metrics in experiments
Visualize metrics in Azure Machine Learning Studio
Log plots in experiments
Log numeric metrics in experiments
Visualize metrics in Azure Machine Learning Studio
Did you know that you can compare models in Azure Machine Learning? In this 1-hour project-based course, you will learn how to log plots in experiments, log numeric metrics in experiments and visualize metrics in Azure Machine Learning Studio. To achieve this, we will use one example data, train a couple of machine learning algorithms in Jupyter notebook and visualize their results in Azure Machine Learning Studio Portal interface. In order to be successful in this project, you will need knowledge of Python language and experience with machine learning in Python. Also, Azure subscription is required (free trial is an option for those who don’t have it), as well as Azure Machine Learning resource and a compute instance within. Instructional links will be provided to guide you through creation, if needed, in the first task. If you are ready to make your experience training models simpler and more enjoyable, this is a course for you! Let’s get started!
En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:
Prepare files in Azure ML Studio for using different ml algorithms
Prepare Jupyter notebook for working with Azure experiments
Create logs for metrics and images for Linear Regression
Azure experiment basics in Python
Create logs for metrics and images for different algorithms
Create visualizations of metrics in Azure Machine Learning Studio Portal
Capstone challenge: Log metrics for Random forest approach and compare with previous results
Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.
En un video de pantalla dividida, tu instructor te guía paso a paso
Al comprar un proyecto guiado, obtendrás todo lo que necesitas para completarlo, incluido el acceso a un espacio de trabajo de escritorio en la nube a través de tu navegador web que contiene los archivos y el software que necesitas para comenzar, además de instrucciones de video paso a paso de un experto en la materia.
Dado que tu espacio de trabajo contiene un escritorio en la nube del tamaño de una computadora portátil o computadora de escritorio, los proyectos guiados no están disponibles en tu dispositivo móvil.
Los instructores de proyectos guiados son expertos en la materia que tienen experiencia en habilidades, herramientas o dominios de su proyecto y les apasiona compartir sus conocimientos para impactar a millones de estudiantes en todo el mundo.
Puedes descargar y conservar cualquiera de tus archivos creados del proyecto guiado. Para hacerlo, puedes usar la función 'Explorador de archivos' mientras accedes a tu escritorio en la nube.
Los proyectos guiados no son elegibles para reembolsos. Ver nuestra política de reembolso completo.
La ayuda financiera no está disponible para proyectos guiados.
El acceso como oyente no está disponible para los proyectos guiados.
En la parte superior de la página, puedes presionar en el nivel de experiencia de este proyecto guiado para ver los requisitos de conocimientos previos. En cada nivel del proyecto guiado, tu instructor te orientará paso a paso.
Sí, todo lo que necesitas para completar tu proyecto guiado estará disponible en un escritorio en la nube que estará disponible en tu navegador.
Aprenderás completando tareas en un entorno de pantalla dividida directamente en tu navegador. En el lado izquierdo de la pantalla, completarás la tarea en tu espacio de trabajo. En el lado derecho de la pantalla, verás a un instructor guiarte a través del proyecto, paso a paso.
¿Tienes más preguntas? Visita el Centro de Ayuda al Estudiante.