Chevron Left
Volver a Deep Learning with PyTorch : Neural Style Transfer

Opiniones y comentarios de aprendices correspondientes a Deep Learning with PyTorch : Neural Style Transfer por parte de Coursera Project Network

86 calificaciones

Acerca del Curso

In this 2 hour-long project-based course, you will learn to implement neural style transfer using PyTorch. Neural Style Transfer is an optimization technique used to take a content and a style image and blend them together so the output image looks like the content image but painted in the style of the style image. We will create artistic style image using content and given style image. We will compute the content and style loss function. We will minimize this loss function using optimization techniques to get an artistic style image that retains content features and style features. This guided project is for learners who want to apply neural style transfer practically using PyTorch. In order to be successful in this guided project, you should be familiar with the theoretical concept of neural style transfer, python programming, and convolutional neural networks.A google account is needed to use the Google colab environment....

Principales reseñas


6 de ene. de 2022

great guided project , learn NST, pytorch, vgg architecture before starting and there are some exceptions in the code feel free to search in stackoverflow.


16 de dic. de 2020

The understanding in this course is amazing and very satisfying. I will recommended to my friends to take this one.

Filtrar por:

1 - 17 de 17 revisiones para Deep Learning with PyTorch : Neural Style Transfer

por Jose L M M

13 de jun. de 2021

por Immadi S P

7 de ene. de 2022

por Vatsal K M

17 de dic. de 2020


22 de feb. de 2021

por Kartik D

16 de ene. de 2021

por 19020587 P H N

18 de dic. de 2021

por Sania Z

27 de sep. de 2021

por Gabriel F

14 de sep. de 2021

por Huyy N

12 de jul. de 2021

por Kenneth N

28 de jul. de 2022

por Tarun K

18 de nov. de 2021

por Yutaro O

14 de may. de 2021

por Monish

5 de ago. de 2021

por Jung S

17 de sep. de 2021

por Frank W

2 de nov. de 2021

por Christos G

6 de dic. de 2020

por Vitor G

4 de oct. de 2022