Employee Attrition Prediction Using Machine Learning

ofrecido por
Coursera Project Network
En este proyecto guiado, tú:

Understand the theory and intuition behind logistic regression classifier models

Build, train and test a logistic regression classifier model in Scikit-Learn

Perform data cleaning, feature engineering and visualization

Clock2 hours
BeginnerPrincipiante
CloudNo se necesita descarga
VideoVideo de pantalla dividida
Comment DotsInglés (English)
LaptopSolo escritorio

In this project-based course, we will build, train and test a machine learning model to predict employee attrition using features such as employee job satisfaction, distance from work, compensation and performance. We will explore two machine learning algorithms, namely: (1) logistic regression classifier model and (2) Extreme Gradient Boosted Trees (XG-Boost). This project could be effectively applied in any Human Resources department to predict which employees are more likely to quit based on their features. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que desarrollarás

  • Machine Learning Regression
  • Data Science
  • Artificial Neural Network
  • Machine Learning
  • regression

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Understand the Problem Statement and Business Case

  2. Import Libraries and Datasets

  3. Perform Data Visualization

  4. Perform Data Visualization - Continued

  5. Create Training and Testing Datasets

  6. Understand the Intuition Behind Logistic Regression

  7. Train and Evaluate a Logistic Regression Model

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Preguntas Frecuentes

Preguntas Frecuentes

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.