Predict Employee Turnover with scikit-learn

4.4
estrellas
217 calificaciones
ofrecido por
Coursera Project Network
5,832 ya inscrito
En este proyecto guiado, tú:

Apply decision trees and random forests with scikit-learn to classification problems

Interpret decision trees and random forest models using feature importances

Tune model hyperparamters to improve classification accuracy

Create interactive, GUI components in Jupyter notebooks using widgets

Clock2 hours
IntermediateIntermedio
CloudNo se necesita descarga
VideoVideo de pantalla dividida
Comment DotsInglés (English)
LaptopSolo escritorio

Welcome to this project-based course on Predicting Employee Turnover with Decision Trees and Random Forests using scikit-learn. In this project, you will use Python and scikit-learn to grow decision trees and random forests, and apply them to an important business problem. Additionally, you will learn to interpret decision trees and random forest models using feature importance plots. Leverage Jupyter widgets to build interactive controls, you can change the parameters of the models on the fly with graphical controls, and see the results in real time! This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and scikit-learn pre-installed.

Habilidades que desarrollarás

Decision TreeMachine LearningRandom ForestclassificationScikit-Learn

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Introduction and Importing Libraries

  2. Exploratory Data Analysis

  3. Encode Categorical Features

  4. Visualize Class Imbalance

  5. Create Training and Test Sets

  6. Build a Decision Tree Classifier with Interactive Controls

  7. Build a Decision Tree Classifier with Interactive Controls (Continued)

  8. Build a Random Forest Classifier with Interactive Controls

  9. Feature Importance and Evaluation Metrics

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Instructor

Reseñas

Principales reseñas sobre PREDICT EMPLOYEE TURNOVER WITH SCIKIT-LEARN

Ver todas las reseñas

Preguntas Frecuentes

Preguntas Frecuentes

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.