Essential Causal Inference Techniques for Data Science

16 calificaciones
ofrecido por
Coursera Project Network
En este proyecto guiado, tú:

Learn the limitations of AB testing and why causal inference techniques can be powerful.

Understand the intuition behind and how to implement the four main causal inference techniques in R.

Explore newer methods at the intersection of causal inference and machine learning and implement them in R.

Clock2 hours
CloudNo se necesita descarga
VideoVideo de pantalla dividida
Comment DotsInglés (English)
LaptopSolo escritorio

Data scientists often get asked questions related to causality: (1) did recent PR coverage drive sign-ups, (2) does customer support increase sales, or (3) did improving the recommendation model drive revenue? Supporting company stakeholders requires every data scientist to learn techniques that can answer questions like these, which are centered around issues of causality and are solved with causal inference. In this project, you will learn the high level theory and intuition behind the four main causal inference techniques of controlled regression, regression discontinuity, difference in difference, and instrumental variables as well as some techniques at the intersection of machine learning and causal inference that are useful in data science called double selection and causal forests. These will help you rigorously answer questions like those above and become a better data scientist!

Habilidades que desarrollarás

  • Regression Discontinuity Design
  • Causal Inference
  • Instrumental Variable
  • regression
  • Difference In Differences

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Use Controlled / Fixed Effects Regression to estimate impact of customer satisfaction on customer revenue.

  2. Use Regression Discontinuity to estimate the impact of customer support on renewal probability.

  3. Use Difference in Difference to estimate the impact of raising prices on revenue.

  4. Use Instrumental Variables to see whether using the mobile app leads to increased customer retention.

  5. Use Double Selection to speed up AB tests and get more precise estimates.

  6. Use Causal Forests to find heterogeneous treatment effects separated by registration source for impact of discounts.

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso



Ver todas las reseñas

Preguntas Frecuentes

Preguntas Frecuentes

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.