Chevron Left
Volver a Exploratory Data Analysis With Python and Pandas

Opiniones y comentarios de aprendices correspondientes a Exploratory Data Analysis With Python and Pandas por parte de Coursera Project Network

4.5
estrellas
340 calificaciones

Acerca del Curso

In this 2-hour long project-based course, you will learn how to perform Exploratory Data Analysis (EDA) in Python. You will use external Python packages such as Pandas, Numpy, Matplotlib, Seaborn etc. to conduct univariate analysis, bivariate analysis, correlation analysis and identify and handle duplicate/missing data. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

Principales reseñas

PG

11 de feb. de 2021

All the explanations were very clear and well explained. This was an excellent course! Please continue building up on this series and move to basic machine learning algorithms using regression.

HM

19 de may. de 2022

This course is very recommendable to every one who wants to build their career in data analytics. Good project and the instructor explained very well step by step.

Filtrar por:

51 - 75 de 77 revisiones para Exploratory Data Analysis With Python and Pandas

por Aimy N B M Y

20 de nov. de 2020

por Ibukunoluwa A

30 de ago. de 2020

por Deleted A

5 de sep. de 2020

por Ragavi N

17 de dic. de 2021

por Teresa S

27 de sep. de 2022

por George J

15 de feb. de 2021

por Angela C

15 de jun. de 2022

por Levi A

20 de feb. de 2021

por Ruslan K

13 de nov. de 2020

por Kancharla V l

4 de dic. de 2020

por Amaia P d A M

27 de abr. de 2022

por Catarina A

18 de abr. de 2021

por Jetender K S

8 de may. de 2022

por Prince A A

27 de dic. de 2021

por Faiza H

4 de mar. de 2022

por Asadi K R

25 de ene. de 2022

por Jorge G

25 de feb. de 2021

por Mae B

29 de sep. de 2020

por Julie S

1 de sep. de 2021

por Omojengbesi M

18 de jul. de 2022

por Ferhat C

29 de sep. de 2022

por Hengameh M

22 de ago. de 2022

por Dev K

11 de may. de 2021

por Knut S

16 de may. de 2021