Chevron Left
Volver a Exploratory Data Analysis with Seaborn

Opiniones y comentarios de aprendices correspondientes a Exploratory Data Analysis with Seaborn por parte de Coursera Project Network

4.6
estrellas
402 calificaciones

Acerca del Curso

Producing visualizations is an important first step in exploring and analyzing real-world data sets. As such, visualization is an indispensable method in any data scientist's toolbox. It is also a powerful tool to identify problems in analyses and for illustrating results.In this project-based course, we will employ the statistical data visualization library, Seaborn, to discover and explore the relationships in the Breast Cancer Wisconsin (Diagnostic) Data Set. We will cover key concepts in exploratory data analysis (EDA) using visualizations to identify and interpret inherent relationships in the data set, produce various chart types including histograms, violin plots, box plots, joint plots, pair grids, and heatmaps, customize plot aesthetics and apply faceting methods to visualize higher dimensional data. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and scikit-learn pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

Principales reseñas

HP

7 de sep. de 2020

This project is great for people go want to advances her career exploring new viz techniques. The instructor is great, clear and easy to follow. I will definitely recommend to take this project.

PG

3 de oct. de 2020

As a beginner, this was a very good insight into EDA for me. You will however, have to read the documentation and more articles to go in-depth. However, this is a very good introductory course.

Filtrar por:

1 - 25 de 67 revisiones para Exploratory Data Analysis with Seaborn

por Ravi K

21 de abr. de 2020

por Rob O

23 de abr. de 2020

por Anees A

3 de may. de 2020

por Suhaimi C

18 de nov. de 2020

por Pavithra K

1 de ago. de 2020

por Abhijit T

9 de abr. de 2020

por ASHISH M

3 de may. de 2020

por Ujjwal K

10 de may. de 2020

por Punam P

15 de may. de 2020

por Mukund P

13 de may. de 2020

por Rishabh R

17 de may. de 2020

por Dr M M S

8 de nov. de 2020

por Shri H

7 de nov. de 2020

por Nesmary G M D

14 de may. de 2022

por RADUL R D

12 de jun. de 2020

por Hector P

7 de sep. de 2020

por Pawan K G

4 de oct. de 2020

por Sayak P

26 de jun. de 2020

por Asmae A

10 de abr. de 2022

por HAY a

29 de jun. de 2020

por Aditya T

5 de nov. de 2020

por Gourav K

27 de jul. de 2020

por Srikanth C

16 de jun. de 2020

por Carlos O G M

1 de nov. de 2022

por omkar

10 de jun. de 2020