Facial Expression Recognition with Keras

796 calificaciones
ofrecido por
Coursera Project Network
16,349 ya inscrito
En este proyecto guiado, tú:

Develop a facial expression recognition model in Keras

Build and train a convolutional neural network (CNN)

Deploy the trained model to a web interface with Flask

Apply the model to real-time video streams and image data

Clock2 hours
CloudNo se necesita descarga
VideoVideo de pantalla dividida
Comment DotsInglés (English)
LaptopSolo escritorio

In this 2-hour long project-based course, you will build and train a convolutional neural network (CNN) in Keras from scratch to recognize facial expressions. The data consists of 48x48 pixel grayscale images of faces. The objective is to classify each face based on the emotion shown in the facial expression into one of seven categories (0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral). You will use OpenCV to automatically detect faces in images and draw bounding boxes around them. Once you have trained, saved, and exported the CNN, you will directly serve the trained model to a web interface and perform real-time facial expression recognition on video and image data. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and Keras pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que desarrollarás

Deep LearningConvolutional Neural NetworkMachine LearningComputer Visionkeras

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

    Cómo funcionan los proyectos guiados

    Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

    En un video de pantalla dividida, tu instructor te guía paso a paso




    Ver todas las reseñas

    Preguntas Frecuentes

    Preguntas Frecuentes

    ¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.