Getting Started with Tensorflow.js

ofrecido por
Coursera Project Network
En este proyecto guiado, tú:

Set up a browser-based project using script tags and an HTML body

Import pre-trained Keras models into a Tensorflow.js web app

Code a prototype Web app using Tensorflow.js

Clock2 hours
IntermediateIntermedio
CloudNo se necesita descarga
VideoVideo de pantalla dividida
Comment DotsInglés (English)
LaptopSolo escritorio

By the end of this project, you will learn how to code a smart webcam to detect people and other everyday objects using a pre-trained COCO-SSD image recognition model with Tensorflow.js. Based on an older library called deeplearn.js, Tensorflow.js is a deep learning library that leverages Tensorflow to create, train and run inference on artificial neural network models directly in a web browser, utilizing the client's GPU/CPU resources (accelerated using WebGL). Tensorflow.js brings Tensorflow to the web! JavaScript/Typescript experience is heavily recommended. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que desarrollarás

  • Deep Learning
  • Html
  • Web Application
  • Tensorflow
  • JavaScript

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Getting Familiar with Tensorflow.js

  2. Using ml5js

  3. Setting up a Tensorflow.js Project

  4. We are going to very briefly cover CSS styling in the p5js editor

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Preguntas Frecuentes

Preguntas Frecuentes

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.