Hierarchical Clustering: Customer Segmentation

4.4
estrellas
76 calificaciones
ofrecido por
Coursera Project Network
2,275 ya inscrito
En este proyecto guiado, tú:

Build unsupervised learning algorithms in Python.

Create, Train, and Visualize a Hierarchical Clustering model in Python.

Clock2 hours
IntermediateIntermedio
CloudNo se necesita descarga
VideoVideo de pantalla dividida
Comment DotsInglés (English)
LaptopSolo escritorio

In this 1-hour long project-based course, you will learn how to use Python to implement a Hierarchical Clustering algorithm, which is also known as hierarchical cluster analysis. This type of algorithm groups objects of similar behavior into groups or clusters. The output of this model is a set of visualized clusters, where each cluster is distinct from each other cluster, and the objects within each cluster are broadly similar to each other in features. In this project, you will learn the fundamental theory and practical illustrations behind Hierarchical Clustering and learn to fit, examine, and utilize unsupervised Clustering models to examine relationships between unlabeled input features and output variables, using Python. We will walk you step-by-step into Machine Learning unsupervised problems. With every task in this project, you will expand your knowledge, develop new skills and broaden your experience in Machine Learning. Particularly, you will build a Hierarchical Clustering algorithm to apply market segmentation on a group of customers based on several features. By the end of this project, you will be able to build your own Hierarchical Clustering model and make amazing clusters of customers. In order to be successful in this project, you should just know the basics of Python and clustering algorithms.

Habilidades que desarrollarás

Unsupervised LearningPython ProgrammingMachine LearningHierarchical Clustering

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Import a dataset and needed libraries

  2. Choose the optimal number of clusters

  3. Fit our model and make predictions

  4. Visualize the clusters

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Reseñas

Principales reseñas sobre HIERARCHICAL CLUSTERING: CUSTOMER SEGMENTATION

Ver todas las reseñas

Preguntas Frecuentes

Preguntas Frecuentes

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.