Interpretable Machine Learning Applications: Part 4

ofrecido por
En este proyecto guiado, tú:

Set up a machine learning application in a "zero configuration" environment such as Google's Colab(oratory) Research platform.

Set up and configure the What-If Tool to analyze the behavior of exemplary machine learning prediction models.

1.5 hours
Intermedio
No se necesita descarga
Video de pantalla dividida
Inglés (English)
Solo escritorio

In this 1-hour long guided project, you will learn how to use the "What-If" Tool (WIT) in the context of training and testing machine learning prediction models. In particular, you will learn a) how to set up a machine learning application in Python by using interactive Python notebook(s) on Google's Colab(oratory) environment, a.k.a. "zero configuration" environment, b) import and prepare the data, c) train and test classifiers as prediction models, d) analyze the behavior of the trained prediction models by using WIT for specific data points (individual basis), e) moving on to the analysis of the behavior of the trained prediction models by using WIT global basis, i.e., all test data considered. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que desarrollarás

  • Data Analysis

  • Data scientist

  • Machine learning project management

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Set up the environment for the "What-If" tool (WIT) as an extension in Jupyter and as a Google's Colaboratory notebook, including importing of the dataset (e.g., white wine quality data)

  2. Train classifiers, e.g., Decision Tree and Random Forest, as exemplary machine learning  prediction models to make predictions about the quality of white wines.

  3. Launch the What-If Tool (WIT) widget. This task will allow us to get a first understanding on how our prediction model(s) behave at both individual and global levels.

  4. Use the What-If Tool (WIT) features to explain the behavior of a prediction model on an individual basis.

  5. Use the What-If Tool (WIT) advanced features to explain the behavior of a prediction model on an individual basis.

  6. Use the What-If Tool (WIT) features to explain the behavior of a prediction model on a global basis.

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Preguntas Frecuentes

Al comprar un proyecto guiado, obtendrás todo lo que necesitas para completarlo, incluido el acceso a un espacio de trabajo de escritorio en la nube a través de tu navegador web que contiene los archivos y el software que necesitas para comenzar, además de instrucciones de video paso a paso de un experto en la materia.

Dado que tu espacio de trabajo contiene un escritorio en la nube del tamaño de una computadora portátil o computadora de escritorio, los proyectos guiados no están disponibles en tu dispositivo móvil.

Los instructores de proyectos guiados son expertos en la materia que tienen experiencia en habilidades, herramientas o dominios de su proyecto y les apasiona compartir sus conocimientos para impactar a millones de estudiantes en todo el mundo.

Puedes descargar y conservar cualquiera de tus archivos creados del proyecto guiado. Para hacerlo, puedes usar la función 'Explorador de archivos' mientras accedes a tu escritorio en la nube.

Los proyectos guiados no son elegibles para reembolsos. Ver nuestra política de reembolso completo.

La ayuda financiera no está disponible para proyectos guiados.

El acceso como oyente no está disponible para los proyectos guiados.

En la parte superior de la página, puedes presionar en el nivel de experiencia de este proyecto guiado para ver los requisitos de conocimientos previos. En cada nivel del proyecto guiado, tu instructor te orientará paso a paso.

Sí, todo lo que necesitas para completar tu proyecto guiado estará disponible en un escritorio en la nube que estará disponible en tu navegador.

Aprenderás completando tareas en un entorno de pantalla dividida directamente en tu navegador. En el lado izquierdo de la pantalla, completarás la tarea en tu espacio de trabajo. En el lado derecho de la pantalla, verás a un instructor guiarte a través del proyecto, paso a paso.