Bank Loan Approval Prediction With Artificial Neural Nets

ofrecido por
Coursera Project Network
En este Proyecto guiado, tú:

Understand the theory and intuition behind Deep Neural Networks

Build and train a deep learning model using Keras with Tensorflow 2.0 as a backend.

Assess the performance of trained model and ensure its generalization using various Key performance indicators.

Clock2 hours
BeginnerPrincipiante
CloudNo se necesita descarga
VideoVideo de pantalla dividida
Comment DotsInglés (English)
LaptopSolo escritorio

In this hands-on project, we will build and train a simple deep neural network model to predict the approval of personal loan for a person based on features like age, experience, income, locations, family, education, exiting mortgage, credit card etc. By the end of this project, you will be able to: - Understand the applications of Artificial Intelligence and Machine Learning techniques in the banking industry - Understand the theory and intuition behind Deep Neural Networks - Import key Python libraries, dataset, and perform Exploratory Data Analysis. - Perform data visualization using Seaborn. - Standardize the data and split them into train and test datasets.   - Build a deep learning model using Keras with Tensorflow 2.0 as a back-end. - Assess the performance of the model and ensure its generalization using various Key Performance Indicators (KPIs). Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que desarrollarás

Deep LearningArtificial Intelligence (AI)Machine LearningPython Programmingclassification

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Task 1: Understand the problem statement and business case

  2. Task 2: Import Datasets and Libraries

  3. Task 3: Exploratory Data Analysis

  4. Task 4: Perform Data Visualization

  5. Task 5: Prepare the data to feed the model

  6. Task 6: Understand the theory and intuition behind Artificial Neural Networks

  7. Task 7: Build a simple Multi Layer Neural Network

  8. Task 8: Compile and train a Deep Learning Model

  9. Task 9: Assess the performance of the trained model

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Preguntas Frecuentes

Preguntas Frecuentes

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.