Logistic Regression for Classification using Julia

ofrecido por
Coursera Project Network
En este Proyecto guiado, tú:

Balance data suing the SMOTE method.

Build a logistic regression model.

Clock1 hour 30 minutes
BeginnerPrincipiante
CloudNo se necesita descarga
VideoVideo de pantalla dividida
Comment DotsInglés (English)
LaptopSolo escritorio

This guided project is about book genre classification using logistic regression in Julia. It is ideal for beginners who do not know what logistic regression is because this project explains these concepts in simple terms. While you are watching me code, you will get a cloud desktop with all the required software pre-installed. This will allow you to code along with me. After all, we learn best with active, hands-on learning. Special features: 1) Simple explanations of important concepts. 2) Use of images to aid in explanation. 3) Use a real world dataset. Note: This project works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que desarrollarás

Data ScienceMachine LearningLogistic Regressiondata preperationjulia

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Exploratory data analysis

  2. One-hot encoding

  3. Check if data is balanced

  4. Build a logistic regression model

  5. Check model accuracy

  6. Check ROC numbers to determine number of false positives and false negatives.

  7. Using SMOTE to correct the imbalanced data

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Preguntas Frecuentes

Preguntas Frecuentes

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.