Medical Image Classification using Tensorflow

ofrecido por
Coursera Project Network
En este proyecto guiado, tú:

Import and compile a Residual Convolutional Network (Resnet).

Train a Resnet to identify pleural effusion in chest x-ray (CXR) images.

Use the fully trained Resnet for inference functions identifying effusion.

Clock2 hours
AdvancedAvanzado
CloudNo se necesita descarga
VideoVideo de pantalla dividida
Comment DotsInglés (English)
LaptopSolo escritorio

The medical imaging industry is set to see 9 and a half billion dollars in growth in just a few years, mostly due to advances in AI imaging technologies. AI integration with medical imaging is expected to gain traction as it enables increased productivity, improved accuracy, and reduced errors in the diagnosis performed by technicians and radiologists. The use of AI will also automate the labor-intensive manual segmentation and enable technicians to identify abnormalities, in turn, accelerating the treatment process. Furthermore, AI platforms are also being developed for hospitals and health systems to help clinicians in making quick decisions and improving patient outcomes. Ultimately, this field of research will benefit from more minds refining the technology. This project will get you started in using Python and Tensorflow/Keras for advanced medical imaging. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que desarrollarás

  • tensorflow in production
  • image classification
  • health informatics analysis

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Preprocess medical imaging data

  2. Compile a neural network model -Part 1

  3. Compile a neural network model -Part 2

  4. Build and Train a Resnet Model to recognize lung effusion

  5. Making Predictions in Inference

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Preguntas Frecuentes

Preguntas Frecuentes

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.