Get Familiar with ML basics in a Kaggle Competition

14 calificaciones
ofrecido por
Coursera Project Network
En este proyecto guiado, tú:

How to get familiar with Machine Learning basics and how to start a model prediction using basic supervised Machine Learning models.

Build, train, test and evaluate the performance of some models.

Submit your first solution on the Kaggle platform.

Clock2 hours
CloudNo se necesita descarga
VideoVideo de pantalla dividida
Comment DotsInglés (English)
LaptopSolo escritorio

In this 1-hour long project, you will be able to understand how to predict which passengers survived the Titanic shipwreck and make your first submission in an Machine Learning competition inside the Kaggle platform. Also, you as a beginner in Machine Learning applications, will get familiar and get a deep understanding of how to start a model prediction using basic supervised Machine Learning models. We will choose classifiers to learn, predict, and make an Exploratory Data Analysis (also called EDA). At the end, you will know how to measure a model performance, and submit your model to the competition and get a score from Kaggle. This guided project is for beginners in Data Science who want to do a practical application using Machine Learning. You will get familiar with the methods used in machine learning applications and data analysis. In order to be successful in this project, you should have an account on the Kaggle platform (no cost is necessary). Be familiar with some basic Python programming, we will use numpy and pandas libraries. Some background in Statistics is appreciated, like as knowledge in probability, but it’s not a requirement.

Habilidades que desarrollarás

  • Python Programming
  • Machine Learning (ML) Algorithms
  • Predictive Modelling
  • Kaggle

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Getting Started with Kaggle

  2. Exploratory Data Analysis (EDA)

  3. Preprocessing I - Taking care of Missing Values

  4. Preprocessing II - Taking care of Missing Values

  5. Preprocessing III - Encoding Categorical Data

  6. Split the Train & Test datasets

  7. Building our Machine Learning Models

  8. Submit your project on Kaggle

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso



Ver todas las reseñas

Preguntas Frecuentes

Preguntas Frecuentes

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.