Movie Recommendation System using Collaborative Filtering

4.2
estrellas
63 calificaciones
ofrecido por
Coursera Project Network
2,313 ya inscrito
En este Proyecto guiado, tú:

Learn to create, train and evaluate a recommendation engine with Scikit-Surprise

Learn to clean, analyse and use real-word datasets for recommendation systems

Clock1 hour 25 minutes
BeginnerPrincipiante
CloudNo se necesita descarga
VideoVideo de pantalla dividida
Comment DotsInglés (English)
LaptopSolo escritorio

With the amount of available online content ever-increasing and all the platforms trying to grab your attention by giving you personalized recommendations, recommendation engines are more important than ever. In this project-based course, you will create a recommendation system using Collaborative Filtering with help of Scikit-surprise library, which learns from past user behavior. We will be working with a movie lense dataset and by the end of this project, you will be able to give unique movie recommendations for every user based on their past ratings. This project is best suited for anyone who is venturing into data science and is curious as to how recommendation engines work. This project will be a great addition to your portfolio to showcase your real-world hands-on experience with recommendation systems as we would be working with a real-world dataset.

Habilidades que desarrollarás

Data ScienceCollaborative FilteringMachine LearningPython ProgrammingRecommender Systems

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Set up required modules and get them ready for use. Become familiar with the guided project interface

  2. Import real-world dataset and clean it

  3. Do exploratory data analysis on the dataset

  4. Remove the unwanted ratings from the dataset and thus do Dimensionality Reduction

  5. Create trainset and antiset from the data

  6. Train your model on your data and see its performance

  7. Make predictions and recommend the best movies for each user

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Reseñas

Principales reseñas sobre MOVIE RECOMMENDATION SYSTEM USING COLLABORATIVE FILTERING

Ver todas las reseñas

Preguntas Frecuentes

Preguntas Frecuentes

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.