Neural Network from Scratch in TensorFlow
273 calificaciones

10.069 ya inscrito
How to implement a neural network from scratch using TensorFlow.
How to solve a multi-class classification problem using the neural network implementation.
273 calificaciones
10.069 ya inscrito
How to implement a neural network from scratch using TensorFlow.
How to solve a multi-class classification problem using the neural network implementation.
In this 2-hours long project-based course, you will learn how to implement a Neural Network model in TensorFlow using its core functionality (i.e. without the help of a high level API like Keras). You will also implement the gradient descent algorithm with the help of TensorFlow's automatic differentiation. While it’s easier to get started with TensorFlow with the Keras API, it’s still worth understanding how a slightly lower level implementation might work in tensorflow, and this project will give you a great starting point. In order to be successful in this project, you should be familiar with python programming, TensorFlow basics, conceptual understanding of Neural Networks and gradient descent. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Data Science
Deep Learning
Mathematical Optimization
Artificial Neural Network
Tensorflow
En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:
Create the Neural Network class
Create a forward pass function
Use the cross entropy loss with logits
Create a predict function
Create the main training mechanism and implement gradient descent with automatic differentiation
Break down data-set in batches
Apply the neural network model to solve a multi-class classification problem
Plot the training results
Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.
En un video de pantalla dividida, tu instructor te guía paso a paso
por SJ
3 de jun. de 2020It was very good way to write code prior. Rhyme is slow.
por D
19 de may. de 2020I learned the practical implementation of neural networks!
por AR
3 de jul. de 2020Best hands-on experience.
The understanding was awesome. Keep making these types of projects.
por AR
25 de may. de 2020It's a nice project where you can implement and understand how a neural network algorithm is built.
Al comprar un proyecto guiado, obtendrás todo lo que necesitas para completarlo, incluido el acceso a un espacio de trabajo de escritorio en la nube a través de tu navegador web que contiene los archivos y el software que necesitas para comenzar, además de instrucciones de video paso a paso de un experto en la materia.
Dado que tu espacio de trabajo contiene un escritorio en la nube del tamaño de una computadora portátil o computadora de escritorio, los proyectos guiados no están disponibles en tu dispositivo móvil.
Los instructores de proyectos guiados son expertos en la materia que tienen experiencia en habilidades, herramientas o dominios de su proyecto y les apasiona compartir sus conocimientos para impactar a millones de estudiantes en todo el mundo.
Puedes descargar y conservar cualquiera de tus archivos creados del proyecto guiado. Para hacerlo, puedes usar la función 'Explorador de archivos' mientras accedes a tu escritorio en la nube.
Los proyectos guiados no son elegibles para reembolsos. Ver nuestra política de reembolso completo.
La ayuda financiera no está disponible para proyectos guiados.
El acceso como oyente no está disponible para los proyectos guiados.
En la parte superior de la página, puedes presionar en el nivel de experiencia de este proyecto guiado para ver los requisitos de conocimientos previos. En cada nivel del proyecto guiado, tu instructor te orientará paso a paso.
Sí, todo lo que necesitas para completar tu proyecto guiado estará disponible en un escritorio en la nube que estará disponible en tu navegador.
Aprenderás completando tareas en un entorno de pantalla dividida directamente en tu navegador. En el lado izquierdo de la pantalla, completarás la tarea en tu espacio de trabajo. En el lado derecho de la pantalla, verás a un instructor guiarte a través del proyecto, paso a paso.
¿Tienes más preguntas? Visita el Centro de Ayuda al Estudiante.