Real-time OCR and Text Detection with Tensorflow, OpenCV and Tesseract

4.2
estrellas
40 calificaciones
ofrecido por
Coursera Project Network
1,530 ya inscrito
En este proyecto guiado, tú:

Train Tensorflow to recognize a Region of Interest (ROI) in an image or frame of a video.

Extract and enhance relevant image segments with OpenCV .

Use Tesseract to extract, export text data for use in real-time.

Clock2 hours
IntermediateIntermedio
CloudNo se necesita descarga
VideoVideo de pantalla dividida
Comment DotsInglés (English)
LaptopSolo escritorio

In this 1-hour long project-based course, you will learn how to collect and label images and use them to train a Tensorflow CNN (convolutional neural network) model to recognize relevant areas of (typeface) text in any image, video frame or frame from webcam video. You will learn how to extract image segments that your detector has identified as containing text and enhance them using various image filters from the OpenCV module. Then you will learn how to pass the result image to Google's open-source OCR (Optical Character Recognition) software using the pytesseract python library and read the text to whatever form of output you like. All of this will be done on Windows, but can be accomplished with very little alteration on Linux as well. We will be using the IDLE development environment to write a single script to scan our video, webcam input, or array of images for text and read that text into our output. Tensorflow, the Tensorflow Object Detection API, Tesseract, the pytesseract library, labelImg for image annotation, OpenCV, and all other required software has already been installed for you in your Rhyme desktop. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que desarrollarás

TensorflowDeep Learning in PythonObject DetectionOptical Character RecognitionComputer Vision

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Set up a new Real Time Text Detection script

  2. Collect and Label Images for recognition of Region of Interest (ROI)

  3. Train Tensorflow to recognize Region of Interest (ROI)

  4. Capture webcam video stream, frames from a video file, or a static image

  5. Extract and enhance relevant image segments with OpenCV

  6. Use Tesseract to extract, export text data for use

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Preguntas Frecuentes

Preguntas Frecuentes

  • Al comprar un proyecto guiado, obtendrás todo lo que necesitas para completarlo, incluido el acceso a un espacio de trabajo de escritorio en la nube a través de tu navegador web que contiene los archivos y el software que necesitas para comenzar, además de instrucciones de video paso a paso de un experto en la materia.

  • Dado que tu espacio de trabajo contiene un escritorio en la nube del tamaño de una computadora portátil o computadora de escritorio, los proyectos guiados no están disponibles en tu dispositivo móvil.

  • Los instructores de proyectos guiados son expertos en la materia que tienen experiencia en habilidades, herramientas o dominios de su proyecto y les apasiona compartir sus conocimientos para impactar a millones de estudiantes en todo el mundo.

  • Puedes descargar y conservar cualquiera de tus archivos creados del proyecto guiado. Para hacerlo, puedes usar la función 'Explorador de archivos' mientras accedes a tu escritorio en la nube.

  • Los proyectos guiados no son elegibles para reembolsos. Ver nuestra política de reembolso completo.

  • La ayuda financiera no está disponible para proyectos guiados.

  • El acceso como oyente no está disponible para los proyectos guiados.

  • En la parte superior de la página, puedes presionar en el nivel de experiencia de este proyecto guiado para ver los requisitos de conocimientos previos. En cada nivel del proyecto guiado, tu instructor te orientará paso a paso.

  • Aprenderás completando tareas en un entorno de pantalla dividida directamente en tu navegador. En el lado izquierdo de la pantalla, completarás la tarea en tu espacio de trabajo. En el lado derecho de la pantalla, verás a un instructor guiarte a través del proyecto, paso a paso.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.