Python for Finance: Portfolio Statistical Data Analysis

ofrecido por
Coursera Project Network
En este proyecto guiado, tú:

Perform exploratory data analysis and visualization of financial data

Portfolio allocation and calculate portfolio statistical metrics

Perform interactive data visualization using Plotly Express

Clock2 hours
BeginnerPrincipiante
CloudNo se necesita descarga
VideoVideo de pantalla dividida
Comment DotsInglés (English)
LaptopSolo escritorio

In this project, we will use the power of python to perform portfolio allocation and statistically analyze the performance of portfolio using metrics such as cumulative return, average daily returns and Sharpe ratio. We will analyze the performance of following companies: Facebook, Netflix and Twitter over the past 7 years. This project is crucial for investors who want to properly manage their portfolios, visualize datasets, find useful patterns, and gain valuable insights such as stock daily returns and risks. This project could be practically used for analyzing company stocks, indices or currencies and performance of portfolio. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que desarrollarás

  • Data Manipulation
  • Financial Analysis
  • Python Programming
  • Data Visualization (DataViz)
  • Finance

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Understand the problem statement and business case

  2. Import datasets and libraries

  3. Perform random asset allocation and calculate portfolio daily return

  4. Perform random asset allocation and calculate portfolio daily return

  5. Perform portfolio data visulaization

  6. U​nderstand and calculate portfolio statistical metrics

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Preguntas Frecuentes

Preguntas Frecuentes

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.