Regression with Automatic Differentiation in TensorFlow

4.7
estrellas
55 calificaciones
ofrecido por
Coursera Project Network
4,062 ya inscrito
En este proyecto guiado, tú:

Understanding tensor constants, and tensor variables in TensorFlow.

Understanding automatic differentiation in TensorFlow.

Using automatic differentiation to solve a linear regression problem in TensorFlow.

Clock1.5 hours
BeginnerPrincipiante
CloudNo se necesita descarga
VideoVideo de pantalla dividida
Comment DotsInglés (English)
LaptopSolo escritorio

In this 1.5 hour long project-based course, you will learn about constants and variables in TensorFlow, you will learn how to use automatic differentiation, and you will apply automatic differentiation to solve a linear regression problem. By the end of this project, you will have a good understanding of how machine learning algorithms can be implemented in TensorFlow. In order to be successful in this project, you should be familiar with Python, Gradient Descent, Linear Regression. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que desarrollarás

Mathematical OptimizationMachine LearningTensorflowLinear RegressionAutomatic Differentiation

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Tensor Constants

  2. Tensor Variables

  3. Automatic Differentiation

  4. Watching Tensors

  5. Persistent Tape

  6. Generating Data for Linear Regression

  7. Linear Regression

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Reseñas

Principales reseñas sobre REGRESSION WITH AUTOMATIC DIFFERENTIATION IN TENSORFLOW

Ver todas las reseñas

Preguntas Frecuentes

Preguntas Frecuentes

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.