Semantic Segmentation with Amazon Sagemaker

4.6
estrellas
63 calificaciones
ofrecido por
Coursera Project Network
4764 ya inscrito
En este Proyecto guiado gratis, tú:

Prepare data for Sagemaker Semantic Segmentation.

Train a model using Sagemaker.

Deploy a trained model using Sagemaker.

Demuestra esta experiencia práctica en una entrevista

Clock2 hours
AdvancedAvanzado
CloudNo se necesita descarga
VideoVideo de pantalla dividida
Comment DotsInglés (English)
LaptopSolo escritorio

Please note: You will need an AWS account to complete this course. Your AWS account will be charged as per your usage. Please make sure that you are able to access Sagemaker within your AWS account. If your AWS account is new, you may need to ask AWS support for access to certain resources. You should be familiar with python programming, and AWS before starting this hands on project. We use a Sagemaker P type instance in this project, and if you don't have access to this instance type, please contact AWS support and request access. In this 2-hour long project-based course, you will learn how to train and deploy a Semantic Segmentation model using Amazon Sagemaker. Sagemaker provides a number of machine learning algorithms ready to be used for solving a number of tasks. We will use the semantic segmentation algorithm from Sagemaker to create, train and deploy a model that will be able to segment images of dogs and cats from the popular IIIT-Oxford Pets Dataset into 3 unique pixel values. That is, each pixel of an input image would be classified as either foreground (pet), background (not a pet), or unclassified (transition between foreground and background). Since this is a practical, project-based course, we will not dive in the theory behind deep learning based semantic segmentation, but will focus purely on training and deploying a model with Sagemaker. You will also need to have some experience with Amazon Web Services (AWS).

Requerimientos

Python programming, conceptual understanding of deep learning, and previous experience with AWS is required.

Habilidades que desarrollarás

Deep Learningsemantic segmentationMachine LearningsagemakerComputer Vision

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Introduction

  2. Download the Data

  3. Visualize the Data

  4. Training Image

  5. Preparing the Data

  6. Uploading the Data to S3

  7. Sagemaker Estimator

  8. Hyperparameters

  9. Data Channels

  10. Model Training

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Reseñas

Principales reseñas sobre SEMANTIC SEGMENTATION WITH AMAZON SAGEMAKER

Ver todas las reseñas

Preguntas Frecuentes

Preguntas Frecuentes

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.