Chevron Left
Volver a Siamese Network with Triplet Loss in Keras

Opiniones y comentarios de aprendices correspondientes a Siamese Network with Triplet Loss in Keras por parte de Coursera Project Network

4.6
estrellas
108 calificaciones

Acerca del Curso

In this 2-hour long project-based course, you will learn how to implement a Triplet Loss function, create a Siamese Network, and train the network with the Triplet Loss function. With this training process, the network will learn to produce Embedding of different classes from a given dataset in a way that Embedding of examples from different classes will start to move away from each other in the vector space. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your Internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with (e.g. Python, Jupyter, and Tensorflow) pre-installed. Prerequisites: In order to be successful in this project, you should be familiar with Python, Keras, Neural Networks. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

Principales reseñas

AG

16 de jun. de 2020

I like the way we got involved into practice by setting goals which are a bit challenging yet we want to achieve successfully.

NB

2 de ago. de 2020

worth enrolling!! checkout in detail about this project even after completion

Filtrar por:

1 - 19 de 19 revisiones para Siamese Network with Triplet Loss in Keras

por Isra P

12 de abr. de 2020

por Joerg A

27 de may. de 2020

por Abhishek P G

17 de jun. de 2020

por Luis A G L

22 de sep. de 2020

por Nittala V B

3 de ago. de 2020

por Fabian L

14 de jun. de 2020

por Angshuman S

15 de jun. de 2020

por XAVIER S M

2 de jun. de 2020

por Doss D

14 de jun. de 2020

por Sourav D

31 de may. de 2020

por Santiago G

5 de nov. de 2020

por sarithanakkala

24 de jun. de 2020

por Qasim K

4 de dic. de 2021

por Siddhesh S

20 de abr. de 2020

por Sri C

4 de dic. de 2020

por Simon S R

4 de sep. de 2020

por Jorge G

25 de feb. de 2021

por Yannik U

16 de mar. de 2022

por Molin D

8 de ago. de 2020