Simple Nearest Neighbors Regression and Classification

ofrecido por
Coursera Project Network
En este proyecto guiado, tú:

Formulate small examples of KNN classification by hand

Implement a KNN Classification algorithm in Python

Implement a KNN Regression algorithm in Python

Clock2 hours
IntermediateIntermedio
CloudNo se necesita descarga
VideoVideo de pantalla dividida
Comment DotsInglés (English)
LaptopSolo escritorio

In this 2-hour long project-based course, we will explore the basic principles behind the K-Nearest Neighbors algorithm, as well as learn how to implement KNN for decision making in Python. A simple, easy-to-implement supervised machine learning algorithm that can be used to solve both classification and regression problems is the k-nearest neighbors (KNN) algorithm. The fundamental principle is that you enter a known data set, add an unknown data point, and the algorithm will tell you which class corresponds to that unknown data point. The unknown is characterized by a straightforward neighborly vote, where the "winner" class is the class of near neighbors. It is most commonly used for predictive decision-making. For instance,: Is a consumer going to default on a loan or not? Will the company make a profit? Should we extend into a certain sector of the market? Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que desarrollarás

  • Statistical Analysis
  • Machine Learning
  • Python Programming
  • K-Nearest Neighbors Algorithm (K-NN)
  • Classification Algorithms

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Understanding the Basic Structure of a KNN model

  2. Computing a simple KNN by hand

  3. Looking at an example of a KNN in action in Python

  4. Implementing an example KNN Regression in Python

  5. Implementing an example KNN Classification in Python

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Preguntas Frecuentes

Preguntas Frecuentes

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.