Building Machine Learning Pipelines in PySpark MLlib

4.3
estrellas

55 calificaciones

ofrecido por

2923 ya inscrito

En este proyecto guiado, tú:
1.5 hours
Intermedio
No se necesita descarga
Video de pantalla dividida
Inglés (English)
Solo escritorio

By the end of this project, you will learn how to create machine learning pipelines using Python and Spark, free, open-source programs that you can download. You will learn how to load your dataset in Spark and learn how to perform basic cleaning techniques such as removing columns with high missing values and removing rows with missing values. You will then create a machine learning pipeline with a random forest regression model. You will use cross validation and parameter tuning to select the best model from the pipeline. Lastly, you will evaluate your model’s performance using various metrics. A pipeline in Spark combines multiple execution steps in the order of their execution. So rather than executing the steps individually, one can put them in a pipeline to streamline the machine learning process. You can save this pipeline, share it with your colleagues, and load it back again effortlessly. Note: You should have a Gmail account which you will use to sign into Google Colab. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que desarrollarás

  • Machine Learning Pipelines

  • hyperparameter tuning

  • PySpark

  • Cross Validation

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Reseñas

Principales reseñas sobre BUILDING MACHINE LEARNING PIPELINES IN PYSPARK MLLIB

Ver todas las reseñas

Preguntas Frecuentes