Statistical Data Visualization with Seaborn From UST

4.6
estrellas
155 calificaciones
ofrecido por
Coursera Project Network
7732 ya inscrito
En este Proyecto guiado gratuito, tú:

Produce and customize various chart types with Seaborn

Apply feature selection and feature extraction methods with scikit-learn

Build a boosted decision tree classifier with XGBoost

Demuestra esta experiencia práctica en una entrevista

Clock1.5 hours
IntermediateIntermedio
CloudNo se necesita descarga
VideoVideo de pantalla dividida
Comment DotsInglés (English)
LaptopSolo escritorio

Welcome to this Guided Project on Statistical Data Visualization with Seaborn, From UST. For more than 20 years, UST has worked side by side with the world’s best companies to make a real impact through transformation. Powered by technology, inspired by people and led by their purpose, they partner with clients from design to operation. With this Guided Project from UST, you can quickly build in-demand job skills and expand your career opportunities in the Data Science field. Producing visualizations is an important first step in exploring and analyzing real-world data sets. As such, visualization is an indispensable method in any data scientist's toolbox as well as a powerful tool to identify problems in analyses and for illustrating results. In this project, we will employ the statistical data visualization library, Seaborn, to discover and explore the relationships in the Breast Cancer Wisconsin (Diagnostic) data set. Using the exploratory data analysis (EDA) results from the Breast Cancer Diagnosis – Exploratory Data Analysis Guided Project, you will practice dropping correlated features, implement feature selection and utilize several feature extraction methods including; feature selection with correlation, univariate feature selection, recursive feature elimination, principal component analysis (PCA) and tree based feature selection methods. Lastly, we will build a boosted decision tree classifier with XGBoost to classify tumors as either malignant or benign. By the end of this Guided Project, you should feel more confident about working with data, creating visualizations for data analysis, and have practiced several methods which apply to a Data Scientist’s role. Let's get started!

Requerimientos

Some experience in the basic programming commands of Python and a general understanding of machine learning.

Habilidades que desarrollarás

  • Data Science
  • Machine Learning
  • Python Programming
  • Seaborn
  • Data Visualization (DataViz)

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Project Overview

  2. Importing Libraries and Data

  3. Dropping Correlated Columns from Feature List

  4. Classification using XGBoost (minimal feature selection)

  5. Univariate Feature Selection

  6. Recursive Feature Elimination with Cross-Validation

  7. Plot CV Scores vs Number of Features Selected

  8. Feature Extraction using Principal Component Analysis

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Instructor

Reseñas

Principales reseñas sobre STATISTICAL DATA VISUALIZATION WITH SEABORN FROM UST

Ver todas las reseñas

Preguntas Frecuentes

Preguntas Frecuentes

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.