Support Vector Machines with scikit-learn

4.3
estrellas
288 calificaciones
ofrecido por
Coursera Project Network
7,148 ya inscrito
En este proyecto guiado, tú:

Understand the theory behind support vector machines

Builld SVM models with scikit-learn to classify linear and non-linear data

Determine the strengths and limitations of SVMs

Develop an SVM-based facial recognition model

Clock2.5 hours
BeginnerPrincipiante
CloudNo se necesita descarga
VideoVideo de pantalla dividida
Comment DotsInglés (English)
LaptopSolo escritorio

In this project, you will learn the functioning and intuition behind a powerful class of supervised linear models known as support vector machines (SVMs). By the end of this project, you will be able to apply SVMs using scikit-learn and Python to your own classification tasks, including building a simple facial recognition model. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and scikit-learn pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que desarrollarás

Data ScienceMachine LearningPython ProgrammingSupport Vector Machine (SVM)Data Analysis

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Getting Started

  2. Beyond Linear Discriminative Classifiers

  3. Many Possible Separators

  4. Plotting the Margins

  5. Training an SVM Model

  6. Facial Recognition with SVMs

  7. Preprocessing the data set

  8. Hyperparameter Tuning with Grid-Search Cross Validation

  9. Visualize Test Images

  10. Evaluating the Support Vector Classifier

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Instructor

Reseñas

Principales reseñas sobre SUPPORT VECTOR MACHINES WITH SCIKIT-LEARN

Ver todas las reseñas

Preguntas Frecuentes

Preguntas Frecuentes

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.