TensorFlow Serving with Docker for Model Deployment

4.9
estrellas
23 calificaciones
ofrecido por
Coursera Project Network
3,196 ya inscrito
En este proyecto guiado, tú:

Train and export TensorFlow Models for text classification

Serve and deploy models with TensorFlow Serving and Docker

Perform model inference with gRPC and REST endpoints

Clock1.5 hours
IntermediateIntermedio
CloudNo se necesita descarga
VideoVideo de pantalla dividida
Comment DotsInglés (English)
LaptopSolo escritorio

This is a hands-on, guided project on deploying deep learning models using TensorFlow Serving with Docker. In this 1.5 hour long project, you will train and export TensorFlow models for text classification, learn how to deploy models with TF Serving and Docker in 90 seconds, and build simple gRPC and REST-based clients in Python for model inference. With the worldwide adoption of machine learning and AI by organizations, it is becoming increasingly important for data scientists and machine learning engineers to know how to deploy models to production. While DevOps groups are fantastic at scaling applications, they are not the experts in ML ecosystems such as TensorFlow and PyTorch. This guided project gives learners a solid, real-world foundation of pushing your TensorFlow models from development to production in no time! Prerequisites: In order to successfully complete this project, you should be familiar with Python, and have prior experience with building models with Keras or TensorFlow. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que desarrollarás

Deep LearningDockerTensorFlow ServingTensorflowmodel deployment

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Introduction and Demo Deployment

  2. Load and Preprocess the Amazon Fine Foods Review Data

  3. Build Text Classification Model using Keras and TensorFlow Hub

  4. Define Training Procedure

  5. Train and Export Model as Protobuf

  6. Test Model

  7. TensorFlow Serving with Docker

  8. Setup a REST Client to Perform Model Predictions

  9. Setup a gRPC Client to Perform Model Predictions

  10. Versioning with TensorFlow Serving

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Preguntas Frecuentes

Preguntas Frecuentes

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.