Text Generation with Markov Chains in Python

ofrecido por
Coursera Project Network
En este Proyecto guiado, tú:

l​earn about Markov chains and apply this concept to modeling and generating text.

Clock1 hour
IntermediateIntermedio
CloudNo se necesita descarga
VideoVideo de pantalla dividida
Comment DotsInglés (English)
LaptopSolo escritorio

In this project-based course, you will learn about Markov chains and use them to build a probabilistic model of an entire book’s text. This will be done from first principles, without libraries. Markov chains are a simple but fundamental approach to modeling stochastic processes, with many practical applications. By the end of this project, you will have generated a random new text based on the book you modeled, using code you wrote in Python.

Habilidades que desarrollarás

Artificial Intelligence (AI)Probability TheoryPython ProgrammingNumpyMarkov Chain

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Read text from file

  2. Build a transition probability matrix

  3. Generate text using a Markov chain

  4. Improve capitalization, punctuation and spacing

  5. Improve text generation with k-token Markov chains

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Preguntas Frecuentes

Preguntas Frecuentes

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.