Visualizing Filters of a CNN using TensorFlow

4.5
estrellas

55 calificaciones

ofrecido por

3043 ya inscrito

En este Proyecto guiado gratuito, tú:
1 hour
Intermedio
No se necesita descarga
Video de pantalla dividida
Inglés (English)
Solo escritorio

In this short, 1 hour long guided project, we will use a Convolutional Neural Network - the popular VGG16 model, and we will visualize various filters from different layers of the CNN. We will do this by using gradient ascent to visualize images that maximally activate specific filters from different layers of the model. We will be using TensorFlow as our machine learning framework. The project uses the Google Colab environment which is a fantastic tool for creating and running Jupyter Notebooks in the cloud, and Colab even provides free GPUs for your notebooks. You will need prior programming experience in Python. This is a practical, hands on guided project for learners who already have theoretical understanding of Neural Networks, Convolutional Neural Networks, and optimization algorithms like gradient descent but want to understand how to use the TensorFlow to visualize various filters of a CNN. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Requerimientos

Habilidades que desarrollarás

  • Deep Learning

  • Artificial Neural Network

  • Convolutional Neural Network

  • Machine Learning

  • Tensorflow

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Reseñas

Principales reseñas sobre VISUALIZING FILTERS OF A CNN USING TENSORFLOW

Ver todas las reseñas

Preguntas Frecuentes