Acerca de este Programa Especializado
8,523 vistas recientes

Cursos 100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Cronograma flexible

Establece y mantén fechas de entrega flexibles.

Nivel intermedio

Aprox. 7 meses para completar

Sugerido 3 horas/semana

Español (Spanish)

Subtítulos: Español (Spanish)

Cursos 100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Cronograma flexible

Establece y mantén fechas de entrega flexibles.

Nivel intermedio

Aprox. 7 meses para completar

Sugerido 3 horas/semana

Español (Spanish)

Subtítulos: Español (Spanish)

Cómo funciona Programa Especializado

Toma cursos

Un programa especializado de Coursera es un conjunto de cursos que te ayudan a dominar una aptitud. Para comenzar, inscríbete en el programa especializado directamente o échale un vistazo a sus cursos y elige uno con el que te gustaría comenzar. Al suscribirte a un curso que forme parte de un programa especializado, quedarás suscrito de manera automática al programa especializado completo. Puedes completar solo un curso: puedes pausar tu aprendizaje o cancelar tu suscripción en cualquier momento. Visita el panel principal del estudiante para realizar un seguimiento de tus inscripciones a cursos y tu progreso.

Proyecto práctico

Cada programa especializado incluye un proyecto práctico. Necesitarás completar correctamente el proyecto para completar el programa especializado y obtener tu certificado. Si el programa especializado incluye un curso separado para el proyecto práctico, necesitarás completar cada uno de los otros cursos antes de poder comenzarlo.

Obtén un certificado

Cuando completes todos los cursos y el proyecto práctico, obtendrás un Certificado que puedes compartir con posibles empleadores y tu red profesional.

how it works

Hay 9 cursos en este Programa Especializado

Curso1

Sesenta años de inteligencia artificial

4.7
68 calificaciones
25 revisiones

En este curso cubriremos el pasado, presente y futuro de la inteligencia artificial. También mencionaremos los conceptos más importantes que serán útiles en el resto del programa especializado. Discutiremos las implicaciones sociales, éticas y filosóficas de los desarrollos en inteligencia artificial.

...
Curso2

Razonamiento artificial

4.4
13 calificaciones
5 revisiones

El razonamiento formal juega un papel importante en la inteligencia artificial. Hay dos maneras principales de formalizar razonamiento: una que enfatiza la deducción (lógica), y otra que enfatiza la incertidumbre (teoría de la probabilidad). En este curso vamos a cubrir una introducción tanto a la lógica (vamos a cubrir tres lógicas) como a la teoría de la probabilidad (vamos a cubrir tres modelos gráficos probabilísticos). Algunas tareas requieren programación básica en Python: El alumno deberá completar código al que se le ha eliminado una parte.

...
Curso3

Resolución de problemas por búsqueda

El curso trata de resolución automática de problemas por medio de algoritmos de búsqueda. Aprenderás a abstraer un problema como un grafo de estados-acciones y a dimensionar su complejidad por medio de la identificación de parámetros. Además, te mostraremos cómo analizar el consumo de recursos computacionales de los algoritmos para seleccionar o adaptar el más apropiado al problema. Nos interesa que puedas aplicar los algoritmos a problemas concretos. Te acompañaremos en la implementación de los algoritmos en el lenguaje de programación Python y te mostraremos algunos ejemplos de su aplicación a ciertos problemas modelo. Al final podrás probar tus algoritmos en un espacio de búsqueda interesante: el resolver el cubo de Rubik.

...
Curso4

Aprendizaje de máquinas

El aprendizaje de máquinas es una rama de la inteligencia artificial dedicada al estudio de métodos para dotar a los agentes artificiales de la capacidad de aprender a partir de ejemplos y/o experiencia. Los métodos de aprendizaje de máquinas pueden generar modelos de problemas complejos a través de instancias específicas, los cuales son capaces de generalizar y/o adaptarse a situaciones nuevas. Estos modelos han permitido llevar a cabo muchas nuevas aplicaciones en áreas muy diversas como generación de descripciones de imágenes, predicción de readmisión hospitalaria o detección de partículas subatómicas. En la actualizada frecuentemente interactuamos con modelos de aprendizaje de máquinas en diversas actividades de nuestra vida cotidiana. Por ejemplo, cuando utilizamos el teclado virtual en nuestros teléfonos móviles, un modelo de aprendizaje de máquinas trata de predecir la siguiente palabra que queremos escribir a partir de nuestro patrón de escritura y la de otros usuarios. De igual manera, al realizar una búsqueda en Internet, un modelo de aprendizaje de máquinas identifica los documentos más relevantes a ser mostrados de todos los posibles documentos usando nuestro historial de búsqueda. Al tomar una foto con nuestra cámara digital, un modelo de aprendizaje de máquinas detecta los rostros en la escena para poder enfocarlos de forma adecuada. Este es un curso básico introductorio al aprendizaje de máquinas con un enfoque práctico, el cual aborda tanto los fundamentos generales como métodos específicos y algunos aspectos prácticos. El curso aborda tanto el aprendizaje supervisado como el aprendizaje sin supervisión. Los métodos que se presentan en el curso son regresión lineal, regresión logística, redes neuronales y K-medias.

...

Instructores

Avatar

Ricardo Montalvo Lezama

Maestro en Ciencias de la Computación
Instituto de Investigaciones en Matemáticas Aplicadas y Sistemas
Avatar

Stalin Muñoz Gutiérrez

Maestro en Ciencias de la Complejidad
Centro de Ciencias de la Complejidad
Avatar

Gibran Fuentes Pineda

Investigador Asociado "C"
Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas
Avatar

Berenice Montalvo Lezama

Profesora asistente
Posgrado en Ciencia e Ingeniería de la Computación
Avatar

Carlos Gershenson

Investigador
Ciencias de la Computación, IIMAS
Avatar

Katya Rodríguez Vázquez

Investigadora Titular B
Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas
Avatar

David Rosenblueth

Investigador de Carrera Titular A
Instituto de Investigaciones en Matemáticas Aplicadas y Sistemas

Acerca de Universidad Nacional Autónoma de México

La Universidad Nacional Autónoma de México fue fundada el 21 de septiembre de 1551 con el nombre de la Real y Pontificia Universidad de México. Es la más grande e importante universidad de México e Iberoamérica. Tiene como propósito primordial estar al servicio del país y de la humanidad, formar profesionistas útiles a la sociedad, organizar y realizar investigaciones, principalmente acerca de las condiciones y problemas nacionales, y extender con la mayor amplitud posible, los beneficios de la cultura....

Preguntas Frecuentes

  • ¡Sí! Para empezar, haz clic en la tarjeta del curso que te interesa e inscríbete. Puedes inscribirte y completar el curso para obtener un certificado que puedes compartir o puedes acceder al curso como oyente para ver los materiales del curso de manera gratuita. Cuando cancelas la suscripción de un curso que forma parte de un programa especializado, se cancela automáticamente la suscripción de todo el programa especializado. Visita el panel del estudiante para realizar un seguimiento de tu progreso.

  • Este curso es completamente en línea, de modo que no necesitas ir a un aula en persona. Puedes acceder a tus lecciones, lecturas y tareas en cualquier momento y cualquier lugar a través de Internet o tu dispositivo móvil.

  • Este programa especializado no otorga crédito universitario, pero algunas universidades pueden aceptar los Certificados del programa especializado para el crédito. Consulta con tu institución para obtener más información.

  • Para los cursos prácticos:

    Programación básica en Python (Curso disponible en https://www.coursera.org/learn/python )

    Álgebra (Curso disponible en https://www.coursera.org/learn/algebra-basica )

  • No es necesario, pero se recomienda seguir el orden del programa.

  • Tener un amplio entendimiento teórico y práctico de distintas ramas de la inteligencia artificial, con la capacidad de analizar problemas en una diversidad de dominios, decidir qué herramientas son las más apropiadas e implementar una solución.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.