Programa especializado: Probabilistic Graphical Models
Probabilistic Graphical Models. Master a new way of reasoning and learning in complex domains
ofrecido por
Habilidades que obtendrás
Acerca de este Programa Especializado
Proyecto de aprendizaje aplicado
Through various lectures, quizzes, programming assignments and exams, learners in this specialization will practice and master the fundamentals of probabilistic graphical models. This specialization has three five-week courses for a total of fifteen weeks.
Diseñado para quienes ya pertenecen al sector.
Diseñado para quienes ya pertenecen al sector.
Hay 3 cursos en este Programa Especializado
Probabilistic Graphical Models 1: Representation
Probabilistic graphical models (PGMs) are a rich framework for encoding probability distributions over complex domains: joint (multivariate) distributions over large numbers of random variables that interact with each other. These representations sit at the intersection of statistics and computer science, relying on concepts from probability theory, graph algorithms, machine learning, and more. They are the basis for the state-of-the-art methods in a wide variety of applications, such as medical diagnosis, image understanding, speech recognition, natural language processing, and many, many more. They are also a foundational tool in formulating many machine learning problems.
Probabilistic Graphical Models 2: Inference
Probabilistic graphical models (PGMs) are a rich framework for encoding probability distributions over complex domains: joint (multivariate) distributions over large numbers of random variables that interact with each other. These representations sit at the intersection of statistics and computer science, relying on concepts from probability theory, graph algorithms, machine learning, and more. They are the basis for the state-of-the-art methods in a wide variety of applications, such as medical diagnosis, image understanding, speech recognition, natural language processing, and many, many more. They are also a foundational tool in formulating many machine learning problems.
Probabilistic Graphical Models 3: Learning
Probabilistic graphical models (PGMs) are a rich framework for encoding probability distributions over complex domains: joint (multivariate) distributions over large numbers of random variables that interact with each other. These representations sit at the intersection of statistics and computer science, relying on concepts from probability theory, graph algorithms, machine learning, and more. They are the basis for the state-of-the-art methods in a wide variety of applications, such as medical diagnosis, image understanding, speech recognition, natural language processing, and many, many more. They are also a foundational tool in formulating many machine learning problems.
ofrecido por

Universidad de Stanford
The Leland Stanford Junior University, commonly referred to as Stanford University or Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto, California, United States.
Preguntas Frecuentes
¿Recibiré crédito universitario por completar el programa especializado?
Can I just enroll in a single course?
¿Puedo inscribirme en un solo curso?
Can I take the course for free?
¿Puedo tomar este curso de manera gratuita?
¿Este curso es 100 % en línea? ¿Necesito asistir a alguna clase en persona?
¿Cuánto tiempo se necesita para completar un programa especializado?
Do I need to take the courses in a specific order?
Will I earn university credit for completing the Specialization?
¿Recibiré crédito universitario por completar el programa especializado?
¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.