Acerca de este Curso

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Basic knowledge of calculus and analysis, series, partial differential equations, and linear algebra.

Aprox. 27 horas para completar

Sugerido: 7 hours/week...

Inglés (English)

Subtítulos: Inglés (English)

Qué aprenderás

  • Check

    How to solve a partial differential equation using the finite-difference, the pseudospectral, or the linear (spectral) finite-element method.

  • Check

    Understanding the limits of explicit space-time simulations due to the stability criterion and spatial and temporal sampling requirements.

  • Check

    Strategies how to plan and setup sophisticated simulation tasks.

  • Check

    Strategies how to avoid errors in simulation results.

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel intermedio

Basic knowledge of calculus and analysis, series, partial differential equations, and linear algebra.

Aprox. 27 horas para completar

Sugerido: 7 hours/week...

Inglés (English)

Subtítulos: Inglés (English)

Programa - Qué aprenderás en este curso

Semana
1
3 horas para completar

Week 01 - Discrete World, Wave Physics, Computers

The use of numerical methods to solve partial differential equations is motivated giving examples form Earth sciences. Concepts of discretization in space and time are introduced and the necessity to sample fields with sufficient accuracy is motivated (i.e. number of grid points per wavelength). Computational meshes are discussed and their power and restrictions to model complex geometries illustrated. The basics of parallel computers and parallel programming are discussed and their impact on realistic simulations. The specific partial differential equation used in this course to illustrate various numerical methods is presented: the acoustic wave equation. Some physical aspects of this equation are illustrated that are relevant to understand its solutions. Finally Jupyter notebooks are introduced that are used with Python programs to illustrate the implementation of the numerical methods. ...
6 videos (Total 63 minutos), 1 reading, 1 quiz
6 videos
W1V2 Spatial scales and meshing12m
W1V3 Waves in a discrete world6m
W1V4 Parallel Simulations10m
W1V5 A bit of wave physics16m
W1V6 Python and Jupyter notebooks10m
1 lectura
Jupiter Notebooks and Python10m
1 ejercicio de práctica
Discretization, Waves, Computers45m
Semana
2
4 horas para completar

Week 02 The Finite-Difference Method - Taylor Operators

In Week 2 we introduce the basic definitions of the finite-difference method. We learn how to use Taylor series to estimate the error of the finite-difference approximations to derivatives and how to increase the accuracy of the approximations using longer operators. We also learn how to implement numerical derivatives using Python....
8 videos (Total 41 minutos), 1 quiz
8 videos
W2V2 Definitions3m
W2V3 Taylor Series5m
W2V4 Python: First Derivative10m
W2V5 Operators5m
W2V6 High Order3m
W2V7 Python: High Order7m
W2V8 Summary1m
1 ejercicio de práctica
Taylor Series and Finite Differences20m
Semana
3
3 horas para completar

Week 03 The Finite-Difference Method - 1D Wave Equation - von Neumann Analysis

We develop the finite-difference algorithm to the acoustic wave equation in 1D, discuss boundary conditions and how to initialize a simulation example. We look at solutions using the Python implementation and observe numerical artifacts. We analytically derive one of the most important results of numerical analysis – the CFL criterion which leads to a conditionally stable algorithm for explicit finite-difference schemes. ...
9 videos (Total 50 minutos), 1 quiz
9 videos
W3V2 Algorithm4m
W3V3 Boundaries, Sources4m
W3V4 Initialization4m
W3V5 Python: Waves in 1D5m
W3V6 Analytical Solutions4m
W3V7 Python: Waves in 1D3m
W3V8 Von Neumann Analysis19m
W3V9 Summary1m
1 ejercicio de práctica
Acoustic Wave Equation with Finite Differences in 1D - CFL criterion
Semana
4
7 horas para completar

Week 04 The Finite-Difference Method in 2D - Numerical Anisotropy, Heterogeneous Media

We develop the solution to the 2D acoustic wave equation, compare with analytical solutions and demonstrate the phenomenon of numerical (non-physical) anisotropy. We extend the von Neumann Analysis to 2D and derive numerical anisotropy analytically. We learn how to initialize a realistic physical problem and illustrate that 2D solution are already quite powerful to understand complex wave phenomena. We introduced the 1D elastic wave equation and show the concept of staggered-grid schemes with the coupled first-order velocity-stress formulation. ...
10 videos (Total 83 minutos), 1 quiz
10 videos
W4V2 Acoustic Waves 2D – Finite-Difference Algorithm6m
W4V3 Python: Acoustic Waves 2D8m
W4V4 Acoustic Waves 2D – von Neumann Analysis5m
W4V5 Acoustic Waves 2D – Waves in a Fault Zone8m
W4V6 Python: Waves in a Fault Zone9m
W4V7 Elastic Wave Equation – Staggered Grids16m
W4V8 Python: Staggered Grids5m
W4V9 Improving numerical accuracy11m
W4V10 Wrap up3m
1 ejercicio de práctica
Acoustic Wave Equation in 2D - Numerical Anisotropy - Staggered Grids45m

Instructor

Avatar

Heiner Igel

Prof. Dr.
Earth and Environmental Sciences

Acerca de Ludwig-Maximilians-Universität München (LMU)

As one of Europe's leading research universities, LMU Munich is committed to the highest international standards of excellence in research and teaching. Building on its 500-year-tradition of scholarship, LMU covers a broad spectrum of disciplines, ranging from the humanities and cultural studies through law, economics and social studies to medicine and the sciences....

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando compras un Certificado, obtienes acceso a todos los materiales del curso, incluidas las tareas calificadas. Una vez que completes el curso, se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes participar del curso como oyente sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.