Acerca de este Curso
6,138 vistas recientes

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel avanzado

Aprox. 9 horas para completar

Sugerido: This course requires 7.5 to 9 hours of study....

Inglés (English)

Subtítulos: Inglés (English)

Habilidades que obtendrás

Data ScienceInformation EngineeringArtificial Intelligence (AI)Machine LearningPython Programming

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel avanzado

Aprox. 9 horas para completar

Sugerido: This course requires 7.5 to 9 hours of study....

Inglés (English)

Subtítulos: Inglés (English)

Programa - Qué aprenderás en este curso

Semana
1
4 horas para completar

Model Evaluation and Performance Metrics

6 videos (Total 18 minutos), 19 lecturas, 6 cuestionarios
6 videos
Evaluation Metrics2m
Introduction to Predictive Linear and Logistic Regression3m
Linear Models4m
Watson Natural Language Understanding Service Overview3m
Case Study Introduction1m
19 lecturas
Evaluation metrics: Through the eyes of our Working Example3m
Evaluation Metrics3m
Regression metrics5m
Classification metrics10m
Multi-class and multi-label metrics3m
Model performance: Through the eyes of our Working Example3m
Generalizing well to unseen data3m
Model plots, bias, variance4m
Relating the evaluation metric to a business metric4m
Linear models: Through the eyes of our Working Example3m
Generalized linear models5m
Linear and logistic regression5m
Regularized regression3m
Stochastic gradient descent classifier3m
Watson Natural Language Understanding: Through the eyes of our Working Example3m
Watson Developer Cloud Python SDK10m
Performance and business metrics: Through the eyes of our Working Example3m
Getting started with performance and business metrics case study (hands-on)2h
Summary/Review10m
6 ejercicios de práctica
Check for Understanding2m
Check for Understanding2m
Check for Understanding2m
Check for Understanding2m
Check for Understanding2m
End of Module Quiz10m
Semana
2
3 horas para completar

Building Machine Learning and Deep Learning Models

5 videos (Total 15 minutos), 14 lecturas, 5 cuestionarios
5 videos
Introduction to Tree Based Methods2m
Neural Networks2m
Introduction to neural networks4m
IBM Watson Visual Recognition Overview2m
14 lecturas
Tree-based methods: Through the eyes of our Working Example3m
Decision trees4m
Bagging and Random forests4m
Boosting2m
Ensemble learning4m
Neural networks: Through the eyes of our Working Example3m
Multilayer perceptron (MLP)4m
Neural network architectures4m
On interpretability2m
Watson Visual Recognition: Through the eyes of our Working Example3m
Watson Developer Cloud Python SDK10m
TensorFlow: Through the eyes of our Working Example3m
Getting started with Convolutional neural networks and TensorFlow (hands-on)2h
Summary/Review10m
5 ejercicios de práctica
Check for Understanding2m
Check for Understanding2m
Check for Understanding2m
Check for Understanding2m
End of Module Quiz10m

Instructores

Avatar

Mark J Grover

Digital Content Delivery Lead
IBM Data & AI Learning
Avatar

Ray Lopez, Ph.D.

Data Science Curriculum Leader
IBM Data & Artificial Intelligence

Acerca de IBM

IBM offers a wide range of technology and consulting services; a broad portfolio of middleware for collaboration, predictive analytics, software development and systems management; and the world's most advanced servers and supercomputers. Utilizing its business consulting, technology and R&D expertise, IBM helps clients become "smarter" as the planet becomes more digitally interconnected. IBM invests more than $6 billion a year in R&D, just completing its 21st year of patent leadership. IBM Research has received recognition beyond any commercial technology research organization and is home to 5 Nobel Laureates, 9 US National Medals of Technology, 5 US National Medals of Science, 6 Turing Awards, and 10 Inductees in US Inventors Hall of Fame....

Acerca de Programa especializado IBM AI Enterprise Workflow

This six course specialization is designed to prepare you to take the certification examination for IBM AI Enterprise Workflow V1 Data Science Specialist. IBM AI Enterprise Workflow is a comprehensive, end-to-end process that enables data scientists to build AI solutions, starting with business priorities and working through to taking AI into production. The learning aims to elevate the skills of practicing data scientists by explicitly connecting business priorities to technical implementations, connecting machine learning to specialized AI use cases such as visual recognition and NLP, and connecting Python to IBM Cloud technologies. The videos, readings, and case studies in these courses are designed to guide you through your work as a data scientist at a hypothetical streaming media company. Throughout this specialization, the focus will be on the practice of data science in large, modern enterprises. You will be guided through the use of enterprise-class tools on the IBM Cloud, tools that you will use to create, deploy and test machine learning models. Your favorite open source tools, such a Jupyter notebooks and Python libraries will be used extensively for data preparation and building models. Models will be deployed on the IBM Cloud using IBM Watson tooling that works seamlessly with open source tools. After successfully completing this specialization, you will be ready to take the official IBM certification examination for the IBM AI Enterprise Workflow....
IBM AI Enterprise Workflow

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos que forman parte del Programa especializado y te darán un Certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.