Acerca de este Curso

3,732 vistas recientes
Certificado para compartir
Obtén un certificado al finalizar
100 % en línea
Comienza de inmediato y aprende a tu propio ritmo.
Fechas límite flexibles
Restablece las fechas límite en función de tus horarios.
Nivel intermedio
Aprox. 9 horas para completar
Inglés (English)

Habilidades que obtendrás

Data ScienceInformation EngineeringArtificial Intelligence (AI)Machine LearningPython Programming
Certificado para compartir
Obtén un certificado al finalizar
100 % en línea
Comienza de inmediato y aprende a tu propio ritmo.
Fechas límite flexibles
Restablece las fechas límite en función de tus horarios.
Nivel intermedio
Aprox. 9 horas para completar
Inglés (English)

ofrecido por

Placeholder

IBM

Programa - Qué aprenderás en este curso

Semana
1

Semana 1

2 horas para completar

Building a Rapid Prototype with Watson Studio AutoAI

2 horas para completar
7 videos (Total 36 minutos), 14 lecturas, 4 cuestionarios
7 videos
Introducing AutoAI2m
Watson Studio Platform Basics2m
Building Rapid Prototypes Demo Introduction2m
Classification Demo11m
Examining the Notebook4m
Regression Demo9m
14 lecturas
Course Prerequisites2m
Learning Outcomes2m
AutoAI Implementations2m
References2m
Summary2m
Learning Outcomes2m
Watson Studio Setup20m
Watson Studio Lab (Activity)20m
Summary2m
Learning Outcomes2m
References2m
Building Rapid Prototypes Lab (Activity)30m
Summary2m
Summary/Review2m
4 ejercicios de práctica
Check for Understanding5m
Check for Understanding5m
Check for Understanding5m
End of Module Quiz5m
Semana
2

Semana 2

2 horas para completar

Automated Data Preparation and Model Selection

2 horas para completar
9 videos (Total 34 minutos), 11 lecturas, 3 cuestionarios
9 videos
Automated Data Preparation10m
Classification Prep Demo3m
Regression Prep Demo4m
The model selection problem2m
Multi-armed Bandit Approach4m
DAUB Algorithm5m
Demo Classification: Making Changes to the Models1m
Demo Regression: Making Changes to the Models1m
11 lecturas
Learning Outcomes2m
Building the Prototype: Prep (graphic)2m
References2m
Data Preparation Lab (Activity)30m
Summary2m
Learning Outcomes2m
Building the Prototype: Model selection (graphic)2m
References10m
Model Selection Lab (Activity)30m
Summary2m
Summary/Review2m
3 ejercicios de práctica
Check for Understanding5m
Check for Understanding5m
End of Module Quiz5m
Semana
3

Semana 3

2 horas para completar

Automated Feature Engineering and Hyperparameter Optimization

2 horas para completar
9 videos (Total 36 minutos), 11 lecturas, 3 cuestionarios
9 videos
Automated Feature Engineering6m
Cognito - Transforms and the Transformation Graph4m
Cognito - Transformation Graph Exploration3m
Demo Classification: Feature Engineering6m
Demo Regression: Feature Engineering3m
Automated HPO5m
RBFOpt2m
HPO Demo3m
11 lecturas
Learning Outcomes2m
Building the Prototype: Feature Engineering (graphic)2m
References2m
Feature Engineering Lab (Activity)30m
Summary2m
Learning Outcomes2m
Building the Prototype: HPO (graphic)2m
References2m
Automated HPO Lab (Activity)30m
Summary2m
Summary/Review2m
3 ejercicios de práctica
Check for Understanding5m
Check for Understanding5m
End of Module Quiz5m
Semana
4

Semana 4

2 horas para completar

Evaluation and Deployment of AutoAI-generated Solutions

2 horas para completar
4 videos (Total 8 minutos), 9 lecturas, 4 cuestionarios
4 videos
Evaluation Demo3m
Deployment Demo2m
Course Closing1m
9 lecturas
Learning Outcomes2m
Evaluation Lab (Activity)10m
References2m
Summary2m
Learning Outcomes2m
Deployment Lab (Activity)15m
Summary2m
Summary/Review2m
More AutoAI Capabilities from IBM / References2m
3 ejercicios de práctica
Check for Understanding5m
Check for Understanding5m
End of Module Quiz5m

Preguntas Frecuentes

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.