Acerca de este Curso
17,000 vistas recientes

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel principiante

Aprox. 16 horas para completar

Sugerido: 4 weeks, 2-5 hours/week...

Inglés (English)

Subtítulos: Inglés (English), Griego

Habilidades que obtendrás

Number TheoryCryptographyModular Exponentiation

100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.

Fechas límite flexibles

Restablece las fechas límite en función de tus horarios.

Nivel principiante

Aprox. 16 horas para completar

Sugerido: 4 weeks, 2-5 hours/week...

Inglés (English)

Subtítulos: Inglés (English), Griego

Programa - Qué aprenderás en este curso

4 horas para completar

Modular Arithmetic

In this week we will discuss integer numbers and standard operations on them: addition, subtraction, multiplication and division. The latter operation is the most interesting one and creates a complicated structure on integer numbers. We will discuss division with a remainder and introduce an arithmetic on the remainders. This mathematical set-up will allow us to created non-trivial computational and cryptographic constructions in further weeks.

10 videos (Total 90 minutos), 4 readings, 13 quizzes
10 videos
Divisibility Tests5m
Division by 212m
Binary System11m
Modular Arithmetic12m
Modular Subtraction and Division11m
4 lecturas
Python Code for Remainders5m
12 ejercicios de práctica
Division by 45m
Four Numbers10m
Division by 10110m
Properties of Divisibility10m
Divisibility Tests8m
Division by 24m
Binary System8m
Modular Arithmetic8m
Remainders of Large Numbers10m
Modular Division10m
4 horas para completar

Euclid's Algorithm

This week we'll study Euclid's algorithm and its applications. This fundamental algorithm is the main stepping-stone for understanding much of modern cryptography! Not only does this algorithm find the greatest common divisor of two numbers (which is an incredibly important problem by itself), but its extended version also gives an efficient way to solve Diophantine equations and compute modular inverses.

7 videos (Total 78 minutos), 4 readings, 7 quizzes
7 videos
Euclid’s Algorithm15m
Extended Euclid’s Algorithm10m
Least Common Multiple8m
Diophantine Equations: Examples5m
Diophantine Equations: Theorem15m
Modular Division12m
4 lecturas
Greatest Common Divisor: Code15m
Extended Euclid's Algorithm: Code10m
7 ejercicios de práctica
Greatest Common Divisor10m
Tile a Rectangle with Squares20m
Least Common Multiple10m
Least Common Multiple: Code15m
Diophantine Equations15m
Diophantine Equations: Code20m
Modular Division: Code20m
4 horas para completar

Building Blocks for Cryptography

Cryptography studies ways to share secrets securely, so that even eavesdroppers can't extract any information from what they hear or network traffic they intercept. One of the most popular cryptographic algorithms called RSA is based on unique integer factorization, Chinese Remainder Theorem and fast modular exponentiation. In this module, we are going to study these properties and algorithms which are the building blocks for RSA. In the next module we will use these building blocks to implement RSA and also to implement some clever attacks against RSA and decypher some secret codes.

14 videos (Total 91 minutos), 4 readings, 6 quizzes
14 videos
Prime Numbers3m
Integers as Products of Primes3m
Existence of Prime Factorization2m
Euclid's Lemma4m
Unique Factorization9m
Implications of Unique Factorization10m
Chinese Remainder Theorem7m
Many Modules5m
Fast Modular Exponentiation10m
Fermat's Little Theorem7m
Euler's Totient Function6m
Euler's Theorem4m
4 lecturas
Fast Modular Exponentiation7m
5 ejercicios de práctica
Integer Factorization20m
Chinese Remainder Theorem: Code15m
Fast Modular Exponentiation: Code20m
Modular Exponentiation8m
5 horas para completar


Modern cryptography has developed the most during the World War I and World War II, because everybody was spying on everybody. You will hear this story and see why simple cyphers didn't work anymore. You will learn that shared secret key must be changed for every communication if one wants it to be secure. This is problematic when the demand for secure communication is skyrocketing, and the communicating parties can be on different continents. You will then study the RSA cryptosystem which allows parties to exchange secret keys such that no eavesdropper is able to decipher these secret keys in any reasonable time. After that, you will study and later implement a few attacks against incorrectly implemented RSA, and thus decipher a few secret codes and even pass a small cryptographic quest!

9 videos (Total 67 minutos), 4 readings, 2 quizzes
9 videos
One-time Pad4m
Many Messages7m
RSA Cryptosystem14m
Simple Attacks5m
Small Difference5m
Insufficient Randomness7m
Hastad's Broadcast Attack8m
More Attacks and Conclusion5m
4 lecturas
Many Time Pad Attack10m
Randomness Generation10m
Slides and External References10m
2 ejercicios de práctica
RSA Quiz: Code2h
RSA Quest - Quiz6m
28 revisionesChevron Right


comenzó una nueva carrera después de completar estos cursos


consiguió un beneficio tangible en su carrera profesional gracias a este curso

Principales revisiones sobre Number Theory and Cryptography

por PWNov 22nd 2018

I was really impressed especially with the RSA portion of the course. It was really well explained, and the programming exercise was cleverly designed and implemented. Well done.

por LJan 2nd 2018

A good course for people who have no basic background in number theory , explicit clear explanation in RSA algorithm. Overall,a good introduction course.



Alexander S. Kulikov

Visiting Professor
Department of Computer Science and Engineering

Michael Levin

Computer Science

Vladimir Podolskii

Associate Professor
Computer Science Department

Acerca de Universidad de California en San Diego

UC San Diego is an academic powerhouse and economic engine, recognized as one of the top 10 public universities by U.S. News and World Report. Innovation is central to who we are and what we do. Here, students learn that knowledge isn't just acquired in the classroom—life is their laboratory....

Acerca de National Research University Higher School of Economics

National Research University - Higher School of Economics (HSE) is one of the top research universities in Russia. Established in 1992 to promote new research and teaching in economics and related disciplines, it now offers programs at all levels of university education across an extraordinary range of fields of study including business, sociology, cultural studies, philosophy, political science, international relations, law, Asian studies, media and communicamathematics, engineering, and more. Learn more on

Acerca del programa especializado Introduction to Discrete Mathematics for Computer Science

Discrete Math is needed to see mathematical structures in the object you work with, and understand their properties. This ability is important for software engineers, data scientists, security and financial analysts (it is not a coincidence that math puzzles are often used for interviews). We cover the basic notions and results (combinatorics, graphs, probability, number theory) that are universally needed. To deliver techniques and ideas in discrete mathematics to the learner we extensively use interactive puzzles specially created for this specialization. To bring the learners experience closer to IT-applications we incorporate programming examples, problems and projects in our courses....
Introduction to Discrete Mathematics for Computer Science

Preguntas Frecuentes

  • Una vez que te inscribes para obtener un Certificado, tendrás acceso a todos los videos, cuestionarios y tareas de programación (si corresponde). Las tareas calificadas por compañeros solo pueden enviarse y revisarse una vez que haya comenzado tu sesión. Si eliges explorar el curso sin comprarlo, es posible que no puedas acceder a determinadas tareas.

  • Cuando te inscribes en un curso, obtienes acceso a todos los cursos que forman parte del Programa especializado y te darán un Certificado cuando completes el trabajo. Se añadirá tu Certificado electrónico a la página Logros. Desde allí, puedes imprimir tu Certificado o añadirlo a tu perfil de LinkedIn. Si solo quieres leer y visualizar el contenido del curso, puedes auditar el curso sin costo.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.