- Manage Azure resources for machine learning
- Deploy and operationalize machine learning solutions
- Run experiments and train models
- Implement responsible machine learning
- Machine Learning
- Supervised Learning
- Regression Analysis
- regression
- Work with Data and Compute in Azure Machine Learning
- Use the Azure Machine Learning SDK to train a model
- Select models and protect sensitive data
- Orchestrate pipelines and deploy real-time machine learning services with Azure Machine Learning
Certificado profesional de Microsoft Azure Data Scientist Associate (DP-100)
Comienza tu carrera en ciencia de los datos. Apply data science and machine learning to implement and run machine learning workloads on Azure.
ofrecido por
Qué aprenderás
Manage Azure resources for machine learning
Run experiments and train models
Deploy and operationalize ethical machine learning solutions
How to plan and create a working environment for data science workloads on Azure and how to run data experiments and train predictive models.
Habilidades que obtendrás

Acerca de este Certificado profesional
Proyecto de aprendizaje aplicado
Learners will engage in interactive exercises throughout this program that offers opportunities to practice and implement what they are learning. They will work directly in the Azure Portal and use the Microsoft Learn Sandbox. This is a free environment that allows learners to explore Microsoft Azure and get hands-on with live Microsoft Azure resources and services. For example, when you learn about training a deep neural network; you will work in a temporary Azure environment called the Sandbox. The beauty about this is that you will be working with real technology but in a controlled environment, which allows you to apply what you learn, and at your own pace. You will need a Microsoft account. If you don't have one, you can create one for free. The Learn Sandbox allows free, fixed-time access to a cloud subscription with no credit card required. Learners can safely explore, create, and manage resources without the fear of incurring costs or "breaking production".
Some experience in training machine learning models with Python and open-source frameworks like Scikit-Learn, PyTorch, and Tensorflow.
Some experience in training machine learning models with Python and open-source frameworks like Scikit-Learn, PyTorch, and Tensorflow.
¿Qué es un certificado profesional?
Desarrolla las habilidades necesarias para completar el trabajo
Ya sea que desees comenzar una nueva carrera o cambiar tu carrera actual, los certificados profesionales de Coursera te ayudan a prepararte para el puesto. Aprende a tu propio ritmo, en el momento y el lugar que te resulten más cómodos. Inscríbete hoy mismo y descubre una nueva carrera con una prueba gratuita de 7 días. Puedes pausar tus clases o finalizar la suscripción en cualquier momento.
Proyectos prácticos
Aplica tus habilidades en proyectos prácticos y desarrolla una cartera que demuestre tu preparación para los trabajos a los posibles empleadores. Deberás terminar los proyectos correctamente para obtener tu certificado.
Obtén una credencial profesional
Cuando completas todos los cursos del programa, obtienes un certificado que puedes compartir con tu red profesional, así como acceso a los recursos de apoyo profesional que te ayudarán a comenzar tu nueva carrera. Muchos certificados profesionales tienen socios interesados en contratar personal que reconocen la credencial del certificado profesional, y otros pueden ayudarte en tu preparación para el examen de un certificado. Puedes ver más información en las páginas del certificado profesional particular en donde aplica.

Hay 5 cursos en este Certificado profesional
Create Machine Learning Models in Microsoft Azure
Machine learning is the foundation for predictive modeling and artificial intelligence. If you want to learn about both the underlying concepts and how to get into building models with the most common machine learning tools this path is for you. In this course, you will learn the core principles of machine learning and how to use common tools and frameworks to train, evaluate, and use machine learning models.
Microsoft Azure Machine Learning for Data Scientists
Machine learning is at the core of artificial intelligence, and many modern applications and services depend on predictive machine learning models. Training a machine learning model is an iterative process that requires time and compute resources. Automated machine learning can help make it easier. In this course, you will learn how to use Azure Machine Learning to create and publish models without writing code.
Build and Operate Machine Learning Solutions with Azure
Azure Machine Learning is a cloud platform for training, deploying, managing, and monitoring machine learning models. In this course, you will learn how to use the Azure Machine Learning Python SDK to create and manage enterprise-ready ML solutions.
Perform data science with Azure Databricks
In this course, you will learn how to harness the power of Apache Spark and powerful clusters running on the Azure Databricks platform to run data science workloads in the cloud.
ofrecido por

Microsoft
Our goal at Microsoft is to empower every individual and organization on the planet to achieve more.
Preguntas Frecuentes
¿Cuál es la política de reembolsos?
¿Puedo inscribirme en un solo curso?
¿Este curso es 100 % en línea? ¿Necesito asistir a alguna clase en persona?
How long does it take to complete the Professional Certificate?
What background knowledge is necessary?
Do I need to take the courses in a specific order?
Will I earn university credit for completing the Professional Certificate?
What will I be able to do upon completing the Professional Certificate?
¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.