Analyze Text Data with Yellowbrick

4.4
estrellas
67 calificaciones
ofrecido por
Coursera Project Network
3,864 ya inscrito
En este proyecto guiado, tú:

Use visual diagnostic tools from Yellowbrick to steer your machine learning workflow

Vectorize text data using TF-IDF

Cluster documents using embedding techniques and appropriate metrics

Clock2 hours
IntermediateIntermedio
CloudNo se necesita descarga
VideoVideo de pantalla dividida
Comment DotsInglés (English)
LaptopSolo escritorio

Welcome to this project-based course on Analyzing Text Data with Yellowbrick. Tasks such as assessing document similarity, topic modelling and other text mining endeavors are predicated on the notion of "closeness" or "similarity" between documents. In this course, we define various distance metrics (e.g. Euclidean, Hamming, Cosine, Manhattan, etc) and understand their merits and shortcomings as they relate to document similarity. We will apply these metrics on documents within a specific corpus and visualize our results. By the end of this course, you will be able to confidently use visual diagnostic tools from Yellowbrick to steer your machine learning workflow, vectorize text data using TF-IDF, and cluster documents using embedding techniques and appropriate metrics. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, Yellowbrick, and scikit-learn pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que desarrollarás

Data ScienceNatural Language ProcessingMachine LearningPython ProgrammingData Visualization (DataViz)

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Introduction and Loading the Corpus

  2. Vectorizing the Documents

  3. Clustering Similar Documents with Squared Euclidean Distance And Euclidean Distance

  4. Manhattan (aka “Taxicab” or “City Block”) Distance

  5. Bray Curtis Dissimilarity and Canberra Distance

  6. Cosine Distance

  7. What Metrics Not to Use

  8. Omitting Class Labels - Using KMeans Clustering

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Reseñas

Principales reseñas sobre ANALYZE TEXT DATA WITH YELLOWBRICK

Ver todas las reseñas

Preguntas Frecuentes

Preguntas Frecuentes

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.