Facial Expression Classification Using Residual Neural Nets

4.6
estrellas
62 calificaciones
ofrecido por
Coursera Project Network
3851 ya inscrito
En este proyecto guiado, tú:

Understand the theory and intuition behind Deep Neural Networks, and Residual Neural Networks, and Convolutional Neural Networks (CNNs).

Build and train a deep learning model based on Convolutional Neural Network and Residual blocks using Keras with Tensorflow 2.0 as a backend.

Assess the performance of trained CNN and ensure its generalization using various Key performance indicators.

Clock2 hours
BeginnerPrincipiante
CloudNo se necesita descarga
VideoVideo de pantalla dividida
Comment DotsInglés (English)
LaptopSolo escritorio

In this hands-on project, we will train a deep learning model based on Convolutional Neural Networks (CNNs) and Residual Blocks to detect facial expressions. This project could be practically used for detecting customer emotions and facial expressions. By the end of this project, you will be able to: - Understand the theory and intuition behind Deep Learning, Convolutional Neural Networks (CNNs) and Residual Neural Networks. - Import Key libraries, dataset and visualize images. - Perform data augmentation to increase the size of the dataset and improve model generalization capability. - Build a deep learning model based on Convolutional Neural Network and Residual blocks using Keras with Tensorflow 2.0 as a backend. - Compile and fit Deep Learning model to training data. - Assess the performance of trained CNN and ensure its generalization using various KPIs. - Improve network performance using regularization techniques such as dropout.

Habilidades que desarrollarás

  • Data Science
  • Deep Learning
  • Machine Learning
  • Python Programming
  • Computer Vision

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Project Overview/Understand the problem statement and business case

  2. Import Libraries/datasets and perform preliminary data processing

  3. Perform Image Visualization

  4. Perform Image Augmentation, normalization and splitting

  5. Understand the theory and intuition behind Deep Neural Networks and CNNs

  6. Build and Train Residual Neural Network Model

  7. Assess the Performance of the Trained Model

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Reseñas

Principales reseñas sobre FACIAL EXPRESSION CLASSIFICATION USING RESIDUAL NEURAL NETS

Ver todas las reseñas

Preguntas Frecuentes

Preguntas Frecuentes

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.