Hyperparameter Tuning with Keras Tuner

4.7
estrellas
36 calificaciones
ofrecido por
Coursera Project Network
En este Proyecto guiado gratuito, tú:

Create and run hyperparameter tuning experiments using Keras Tuner

Create and use Custom Keras Tuners

Demuestra esta experiencia práctica en una entrevista

Clock2 hours
IntermediateIntermedio
CloudNo se necesita descarga
VideoVideo de pantalla dividida
Comment DotsInglés (English)
LaptopSolo escritorio

In this 2-hour long guided project, we will use Keras Tuner to find optimal hyperparamters for a Keras model. Keras Tuner is an open source package for Keras which can help machine learning practitioners automate Hyperparameter tuning tasks for their Keras models. The concepts learned in this project will apply across a variety of model architectures and problem scenarios. Please note that we are going to learn to use Keras Tuner for hyperparameter tuning, and are not going to implement the tuning algorithms ourselves. At the time of recording this project, Keras Tuner has a few tuning algorithms including Random Search, Bayesian Optimization and HyperBand. In order to complete this project successfully, you will need prior programming experience in Python. This is a practical, hands on guided project for learners who already have theoretical understanding of Neural Networks, and optimization algorithms like gradient descent but want to understand how to use Keras Tuner to start optimizing hyperparameters for training their Keras models. You should also be familiar with the Keras API. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Requerimientos

Prior programming experience in Python. Conceptual understanding of Neural Networks. Prior experience with TensorFlow and Keras.

Habilidades que desarrollarás

  • Deep Learning
  • Machine Learning
  • Hyperparameter Optimization
  • hyperparameter tuning
  • keras

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Introduction

  2. Installing Keras Tuner and Downloading the Data

  3. Creating the Model

  4. Hyperparameters

  5. Keras Tuner

  6. Training Results

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Preguntas Frecuentes

Preguntas Frecuentes

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.