Machine Learning para series temporales con ARIMA, SARIMA...

ofrecido por
Coursera Project Network
En este Proyecto guiado, tú:

Conocer los fundamentos de las series temporales

Entrenar diferentes modelos estadísticos de series temporales como AR, MA, ARMA, ARIMA, SARIMA

Predecir datos futuros en base a series de tiempo

Clock2 horas
IntermediateIntermedio
CloudNo se necesita descarga
VideoVideo de pantalla dividida
Comment DotsEspañol (Spanish)
LaptopSolo escritorio

Proyecto aplicado y práctico para aprender a entrenar modelos de Machine Learning como: AR, MA, ARMA, ARIMA, autoARIMA, SARIMA y autoSARIMA para predecir series temporales con Python.

Habilidades que desarrollarás

ARMAMachine LearningAutoregressive Integrated Moving Average (ARIMA)Time SeriesSARIMA

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Introducción a las series temporales

  2. Tipos de datos de series temporales

  3. Preprocesamiento y análisis de series temporales

  4. Ejercicio aplicado. Preprocesamiento y análisis

  5. Técnicas para transformar series en estacionarias

  6. Modelo de autoregresión (AR) y métricas de evaluación

  7. Ejercicio aplicado. Modelo AR

  8. Modelo de media móvil (MA) y media móvil autorregresiva (ARMA)

  9. Ejercicio aplicado MA y ARMA

  10. Modelo de ARIMA y autoARIMA

  11. Modelo de SARIMA y auto SARIMA

  12. Ejercicio aplicado. ARIMA y SARIMA

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Preguntas Frecuentes

Preguntas Frecuentes

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.