Build a Machine Learning Web App with Streamlit and Python

4.7
estrellas

356 calificaciones

ofrecido por

10.123 ya inscrito

En este proyecto guiado, tú:

Build interactive web applications with Streamlit and Python

Train Logistic Regression, Random Forest, and Support Vector Classifiers using scikit-learn

Plot evaluation metrics for binary classification algorithms

1.5 hours
Intermedio
No se necesita descarga
Video de pantalla dividida
Inglés (English)
Solo escritorio

Welcome to this hands-on project on building your first machine learning web app with the Streamlit library in Python. By the end of this project, you are going to be comfortable with using Python and Streamlit to build beautiful and interactive ML web apps with zero web development experience! We are going to load, explore, visualize and interact with data, and generate dashboards in less than 100 lines of Python code! Our web application will allows users to choose what classification algorithm they want to use and let them interactively set hyper-parameter values, all without them knowing to code! Prior experience with writing simple Python scripts and using pandas for data manipulation is recommended. It is required that you have an understanding of Logistic Regression, Support Vector Machines, and Random Forest Classifiers and how to use them in scikit-learn. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que desarrollarás

  • Data Science

  • Machine Learning

  • Python Programming

  • Streamlit

  • Scikit-Learn

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Project Overview and Demo

  2. Turn Simple Python Scripts into Web Apps

  3. Load the Mushrooms Data Set

  4. Creating Training and Test Sets

  5. Plot Evaluation Metrics

  6. Training a Support Vector Classifier

  7. Training a Support Vector Classifier (Part 2)

  8. Train a Logistic Regression Classifier

  9. Training a Random Forest Classifier

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Instructor

Reseñas

Principales reseñas sobre BUILD A MACHINE LEARNING WEB APP WITH STREAMLIT AND PYTHON

Ver todas las reseñas

Preguntas Frecuentes

Al comprar un proyecto guiado, obtendrás todo lo que necesitas para completarlo, incluido el acceso a un espacio de trabajo de escritorio en la nube a través de tu navegador web que contiene los archivos y el software que necesitas para comenzar, además de instrucciones de video paso a paso de un experto en la materia.

Dado que tu espacio de trabajo contiene un escritorio en la nube del tamaño de una computadora portátil o computadora de escritorio, los proyectos guiados no están disponibles en tu dispositivo móvil.

Los instructores de proyectos guiados son expertos en la materia que tienen experiencia en habilidades, herramientas o dominios de su proyecto y les apasiona compartir sus conocimientos para impactar a millones de estudiantes en todo el mundo.

Puedes descargar y conservar cualquiera de tus archivos creados del proyecto guiado. Para hacerlo, puedes usar la función 'Explorador de archivos' mientras accedes a tu escritorio en la nube.

Los proyectos guiados no son elegibles para reembolsos. Ver nuestra política de reembolso completo.

La ayuda financiera no está disponible para proyectos guiados.

El acceso como oyente no está disponible para los proyectos guiados.

En la parte superior de la página, puedes presionar en el nivel de experiencia de este proyecto guiado para ver los requisitos de conocimientos previos. En cada nivel del proyecto guiado, tu instructor te orientará paso a paso.

Sí, todo lo que necesitas para completar tu proyecto guiado estará disponible en un escritorio en la nube que estará disponible en tu navegador.

Aprenderás completando tareas en un entorno de pantalla dividida directamente en tu navegador. En el lado izquierdo de la pantalla, completarás la tarea en tu espacio de trabajo. En el lado derecho de la pantalla, verás a un instructor guiarte a través del proyecto, paso a paso.