Build a Machine Learning Web App with Streamlit and Python

4.6
estrellas
27 calificaciones
6 revisiones
ofrecido por
Rhyme
En este Guided Project, tú:

Build interactive web applications with Streamlit and Python

Train Logistic Regression, Random Forest, and Support Vector Classifiers using scikit-learn

Plot evaluation metrics for binary classification algorithms

Clock1.5 hours
IntermediateIntermedio
CloudNo se necesita descarga
VideoVideo de pantalla dividida
Comment DotsInglés (English)
LaptopSolo escritorio

Welcome to this hands-on project on building your first machine learning web app with the Streamlit library in Python. By the end of this project, you are going to be comfortable with using Python and Streamlit to build beautiful and interactive ML web apps with zero web development experience! We are going to load, explore, visualize and interact with data, and generate dashboards in less than 100 lines of Python code! Our web application will allows users to choose what classification algorithm they want to use and let them interactively set hyper-parameter values, all without them knowing to code! Prior experience with writing simple Python scripts and using pandas for data manipulation is recommended. It is required that you have an understanding of Logistic Regression, Support Vector Machines, and Random Forest Classifiers and how to use them in scikit-learn. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que desarrollarás

Data ScienceMachine LearningPython ProgrammingStreamlitScikit-Learn

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Project Overview and Demo

  2. Turn Simple Python Scripts into Web Apps

  3. Load the Mushrooms Data Set

  4. Creating Training and Test Sets

  5. Plot Evaluation Metrics

  6. Training a Support Vector Classifier

  7. Training a Support Vector Classifier (Part 2)

  8. Train a Logistic Regression Classifier

  9. Training a Random Forest Classifier

How Guided Projects work

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Instructor

Preguntas Frecuentes

Preguntas Frecuentes

  • By purchasing a Guided Project, you'll get everything you need to complete the Guided Project including access to a cloud desktop workspace through your web browser that contains the files and software you need to get started, plus step-by-step video instruction from a subject matter expert.

  • Because your workspace contains a cloud desktop that is sized for a laptop or desktop computer, Guided Projects are not available on your mobile device.

  • Guided Project instructors are subject matter experts who have experience in the skill, tool or domain of their project and are passionate about sharing their knowledge to impact millions of learners around the world.

  • You can download and keep any of your created files from the Guided Project. To do so, you can use the “File Browser” feature while you are accessing your cloud desktop.

  • Guided Projects are not eligible for refunds. Ver nuestra política de reembolso completo.

  • Financial aid is not available for Guided Projects.

  • Auditing is not available for Guided Projects.

  • At the top of the page, you can press on the experience level for this Guided Project to view any knowledge prerequisites. For every level of Guided Project, your instructor will walk you through step-by-step.

  • Yes, everything you need to complete your Guided Project will be available in a cloud desktop that is available in your browser.

  • Aprenderás completando tareas en un entorno de pantalla dividida directamente en tu navegador. En el lado izquierdo de la pantalla, completarás la tarea en tu espacio de trabajo. En el lado derecho de la pantalla, verás a un instructor guiarte a través del proyecto, paso a paso.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.