Regresión logística con NumPy y Python

ofrecido por
Coursera Project Network
En este Proyecto guiado, tú:

Implementarás el algoritmo de descenso de gradientes desde cero

Realizarás una regresión logística con Numpy y Python

Crearás visualizaciones de datos con Matplotlib y Seaborn

Clock2 horas
BeginnerPrincipiante
CloudNo se necesita descarga
VideoVideo de pantalla dividida
Comment DotsEspañol (Spanish)
LaptopSolo escritorio

Bienvenidos a este curso basado en un proyecto de regresión logística con Numpy y Python. En este proyecto, aprenderás uno de los conceptos bases del machine learning sin usar ninguna de las bibliotecas o librerías populares de machine learning como scikit-learn y statsmodels. El objetivo de este proyecto es que implementes por ti mismo toda la carpintería, incluyendo descenso de gradiente, función de costo, y regresión logística, que se utilizan en diversos algoritmos de aprendizaje, para que tengas una comprensión más profunda de los fundamentos. Para cuando complete este proyecto, podrá construir un modelo de regresión logística utilizando Python y Numpy, realizar análisis de datos exploratorios básicos, e implementar el descenso de gradientes desde cero. Este curso se ejecuta en la plataforma de proyectos prácticos de Coursera llamada Rhyme. En Rhyme, se realizan proyectos de forma práctica en el navegador. Tendrás acceso instantáneo a escritorios en la nube pre-configurados que contienen todo el software y los datos que necesitas para el proyecto. Todo ya está configurado directamente en tu navegador de Internet para que puedas concentrarte en el aprendizaje. Para este proyecto, obtendrás acceso instantáneo a un escritorio en la nube con Python, Jupyter, Numpy y Seaborn preinstalados.

Habilidades que desarrollarás

Data ScienceMachine LearningPython ProgrammingclassificationNumpy

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Introducción a Rhyme y al proyecto

  2. Importar el dataset y las librerías

  3. Visualización de los datos

  4. Definir la función logística de Sigmoid

  5. Calcular la función del costo y el gradiente

  6. Inicializar el costo y el gradiente

  7. Calcular el descenso del gradiente

  8. Trazar la convergencia de la función del costo

  9. Trazar el límite de decisión

  10. Realizar predicciones usando los valores optimizados

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Preguntas Frecuentes

Preguntas Frecuentes

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.