Series Temporales con Pycaret y Python

ofrecido por
Coursera Project Network
En este Proyecto guiado, tú:

Entrenar diferentes modelos como Xgboost, Catboost o random forest para predecir series temporales

Predecir datos futuros en base a series de tiempo

Entrenar modelos avanzados de Machine Learning para series temporales

Clock2 horas
IntermediateIntermedio
CloudNo se necesita descarga
VideoVideo de pantalla dividida
Comment DotsEspañol (Spanish)
LaptopSolo escritorio

En este proyecto aplicado y práctico aprenderás a entrenar modelos capaces de predecir series temporales. Para ello utilizaremos la librería de Pycaret con Python y entrenaremos modelos como: XGBoost, Catboost o Random forest. También aprenderemos a generar modelos más avanzados con lñas diferentes técnicas de ensamblado de modelos. Al finalizar este curso habrás aprendido a entrenar tus propios modelos y a aplicarlos en tus propios proyectos.

Habilidades que desarrollarás

Time SeriesMachine LearningXgboostPyCaret

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Introducción a las series temporales

  2. Clases de modelos de series de tiempo

  3. Fundamentos de Pycaret

  4. Series temporales univariantes. Pre-procesamiento

  5. Ejercicio aplicado. Pre-procesamiento de datos

  6. Series temporales univariantes. Entrenamiento del modelo

  7. Ejercicio aplicado. Entrenamiento de un modelo para predecir series de tiempo

  8. Series temporales univariantes. Evaluación del modelo

  9. Ejercicio aplicado. Evaluación del modelo

  10. Series temporales univariantes. Modelos avanzados

  11. Series temporales múltiples. Pre-procesamiento

  12. Ejercicio aplicado. Series temporales múltiples

  13. Series temporales múltiples. Entrenamiento y evaluación del modelo

  14. Ejercicio aplicado. Series temporales múltiples. Parte II

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Preguntas Frecuentes

Preguntas Frecuentes

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.