Transfer Learning for Food Classification

4.5
estrellas
17 calificaciones
ofrecido por
Coursera Project Network
En este proyecto guiado, tú:

Understand the theory and intuition behind Convolutional Neural Networks (CNNs) and transfer learning

Build and train a Deep Learning Model using Pre-Trained InceptionResnetV2

Assess the performance of trained CNN using various Key performance indicators

Clock2 hours
BeginnerPrincipiante
CloudNo se necesita descarga
VideoVideo de pantalla dividida
Comment DotsInglés (English)
LaptopSolo escritorio

In this hands-on project, we will train a deep learning model to predict the type of food and then fine tune the model to improve its performance. This project could be practically applied in food industry to detect the type and quality of food. In this 2-hours long project-based course, you will be able to: - Understand the theory and intuition behind Convolutional Neural Networks (CNNs). - Understand the theory and intuition behind transfer learning. - Import Key libraries, dataset and visualize images. - Perform data augmentation. - Build a Deep Learning Model using Pre-Trained InceptionResnetV2. - Compile and fit Deep Learning model to training data. - Assess the performance of trained CNN and ensure its generalization using various KPIs.

Habilidades que desarrollarás

Deep LearningMachine LearningPython ProgrammingArtificial Intelligence(AI)Computer Vision

Aprende paso a paso

En un video que se reproduce en una pantalla dividida con tu área de trabajo, tu instructor te guiará en cada paso:

  1. Understand the Problem Statement and Business Case

  2. Import Libraries and Datasets

  3. Perform Data Exploration and Visualization

  4. Perform Image Augmentation and Create Data Generator

  5. Understand the theory and intuition behind Transfer Learning

  6. Build Deep Learning model using Pre-trained Inception ResNet

  7. Compile and Train Deep Learning Model

  8. Fine Tune the Trained Model

  9. Assess the Performance of the Trained Model

Cómo funcionan los proyectos guiados

Tu espacio de trabajo es un escritorio virtual directamente en tu navegador, no requiere descarga.

En un video de pantalla dividida, tu instructor te guía paso a paso

Preguntas Frecuentes

Preguntas Frecuentes

  • Al comprar un proyecto guiado, obtendrás todo lo que necesitas para completarlo, incluido el acceso a un espacio de trabajo de escritorio en la nube a través de tu navegador web que contiene los archivos y el software que necesitas para comenzar, además de instrucciones de video paso a paso de un experto en la materia.

  • Dado que tu espacio de trabajo contiene un escritorio en la nube del tamaño de una computadora portátil o computadora de escritorio, los proyectos guiados no están disponibles en tu dispositivo móvil.

  • Los instructores de proyectos guiados son expertos en la materia que tienen experiencia en habilidades, herramientas o dominios de su proyecto y les apasiona compartir sus conocimientos para impactar a millones de estudiantes en todo el mundo.

  • Puedes descargar y conservar cualquiera de tus archivos creados del proyecto guiado. Para hacerlo, puedes usar la función 'Explorador de archivos' mientras accedes a tu escritorio en la nube.

  • Los proyectos guiados no son elegibles para reembolsos. Ver nuestra política de reembolso completo.

  • La ayuda financiera no está disponible para proyectos guiados.

  • El acceso como oyente no está disponible para los proyectos guiados.

  • En la parte superior de la página, puedes presionar en el nivel de experiencia de este proyecto guiado para ver los requisitos de conocimientos previos. En cada nivel del proyecto guiado, tu instructor te orientará paso a paso.

  • Aprenderás completando tareas en un entorno de pantalla dividida directamente en tu navegador. En el lado izquierdo de la pantalla, completarás la tarea en tu espacio de trabajo. En el lado derecho de la pantalla, verás a un instructor guiarte a través del proyecto, paso a paso.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.