About this Programa Especializado
Cursos 100 % en línea

Cursos 100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.
Cronograma flexible

Cronograma flexible

Establece y mantén fechas de entrega flexibles.
Nivel avanzado

Nivel avanzado

Idiomas disponibles

Inglés (English)

Subtítulos: Inglés (English)...
Cursos 100 % en línea

Cursos 100 % en línea

Comienza de inmediato y aprende a tu propio ritmo.
Cronograma flexible

Cronograma flexible

Establece y mantén fechas de entrega flexibles.
Nivel avanzado

Nivel avanzado

Idiomas disponibles

Inglés (English)

Subtítulos: Inglés (English)...

How the Programa Especializado Works

Toma cursos

Un programa especializado de Coursera es un conjunto de cursos que te ayudan a dominar una aptitud. Para comenzar, inscríbete en el programa especializado directamente o échale un vistazo a sus cursos y elige uno con el que te gustaría comenzar. Al suscribirte a un curso que forme parte de un programa especializado, quedarás suscrito de manera automática al programa especializado completo. Puedes completar solo un curso: puedes pausar tu aprendizaje o cancelar tu suscripción en cualquier momento. Visita el panel principal del estudiante para realizar un seguimiento de tus inscripciones a cursos y tu progreso.

Proyecto práctico

Cada programa especializado incluye un proyecto práctico. Necesitarás completar correctamente el proyecto para completar el programa especializado y obtener tu certificado. Si el programa especializado incluye un curso separado para el proyecto práctico, necesitarás completar cada uno de los otros cursos antes de poder comenzarlo.

Obtén un certificado

Cuando completes todos los cursos y el proyecto práctico, obtendrás un Certificado que puedes compartir con posibles empleadores y tu red profesional.

how it works

Hay 7 cursos en este Programa Especializado

Curso1

Introduction to Deep Learning

4.6
646 calificaciones
155 revisiones
The goal of this course is to give learners basic understanding of modern neural networks and their applications in computer vision and natural language understanding. The course starts with a recap of linear models and discussion of stochastic optimization methods that are crucial for training deep neural networks. Learners will study all popular building blocks of neural networks including fully connected layers, convolutional and recurrent layers. Learners will use these building blocks to define complex modern architectures in TensorFlow and Keras frameworks. In the course project learner will implement deep neural network for the task of image captioning which solves the problem of giving a text description for an input image. The prerequisites for this course are: 1) Basic knowledge of Python. 2) Basic linear algebra and probability. Please note that this is an advanced course and we assume basic knowledge of machine learning. You should understand: 1) Linear regression: mean squared error, analytical solution. 2) Logistic regression: model, cross-entropy loss, class probability estimation. 3) Gradient descent for linear models. Derivatives of MSE and cross-entropy loss functions. 4) The problem of overfitting. 5) Regularization for linear models....
Curso2

How to Win a Data Science Competition: Learn from Top Kagglers

4.7
404 calificaciones
88 revisiones
If you want to break into competitive data science, then this course is for you! Participating in predictive modelling competitions can help you gain practical experience, improve and harness your data modelling skills in various domains such as credit, insurance, marketing, natural language processing, sales’ forecasting and computer vision to name a few. At the same time you get to do it in a competitive context against thousands of participants where each one tries to build the most predictive algorithm. Pushing each other to the limit can result in better performance and smaller prediction errors. Being able to achieve high ranks consistently can help you accelerate your career in data science. In this course, you will learn to analyse and solve competitively such predictive modelling tasks. When you finish this class, you will: - Understand how to solve predictive modelling competitions efficiently and learn which of the skills obtained can be applicable to real-world tasks. - Learn how to preprocess the data and generate new features from various sources such as text and images. - Be taught advanced feature engineering techniques like generating mean-encodings, using aggregated statistical measures or finding nearest neighbors as a means to improve your predictions. - Be able to form reliable cross validation methodologies that help you benchmark your solutions and avoid overfitting or underfitting when tested with unobserved (test) data. - Gain experience of analysing and interpreting the data. You will become aware of inconsistencies, high noise levels, errors and other data-related issues such as leakages and you will learn how to overcome them. - Acquire knowledge of different algorithms and learn how to efficiently tune their hyperparameters and achieve top performance. - Master the art of combining different machine learning models and learn how to ensemble. - Get exposed to past (winning) solutions and codes and learn how to read them. Disclaimer : This is not a machine learning course in the general sense. This course will teach you how to get high-rank solutions against thousands of competitors with focus on practical usage of machine learning methods rather than the theoretical underpinnings behind them. Prerequisites: - Python: work with DataFrames in pandas, plot figures in matplotlib, import and train models from scikit-learn, XGBoost, LightGBM. - Machine Learning: basic understanding of linear models, K-NN, random forest, gradient boosting and neural networks....
Curso3

Bayesian Methods for Machine Learning

4.6
234 calificaciones
72 revisiones
Bayesian methods are used in lots of fields: from game development to drug discovery. They give superpowers to many machine learning algorithms: handling missing data, extracting much more information from small datasets. Bayesian methods also allow us to estimate uncertainty in predictions, which is a really desirable feature for fields like medicine. When Bayesian methods are applied to deep learning, it turns out that they allow you to compress your models 100 folds, and automatically tune hyperparametrs, saving your time and money. In six weeks we will discuss the basics of Bayesian methods: from how to define a probabilistic model to how to make predictions from it. We will see how one can fully automate this workflow and how to speed it up using some advanced techniques. We will also see applications of Bayesian methods to deep learning and how to generate new images with it. We will see how new drugs that cure severe diseases be found with Bayesian methods....
Curso4

Practical Reinforcement Learning

4.3
115 calificaciones
33 revisiones
Welcome to the Reinforcement Learning course. Here you will find out about: - foundations of RL methods: value/policy iteration, q-learning, policy gradient, etc. --- with math & batteries included - using deep neural networks for RL tasks --- also known as "the hype train" - state of the art RL algorithms --- and how to apply duct tape to them for practical problems. - and, of course, teaching your neural network to play games --- because that's what everyone thinks RL is about. We'll also use it for seq2seq and contextual bandits. Jump in. It's gonna be fun!...

Instructores

Avatar

Mikhail Hushchyn

Researcher at Laboratory for Methods of Big Data Analysis
HSE Faculty of Computer Science
Avatar

Alexey Zobnin

Accosiate professor
HSE Faculty of Computer Science
Avatar

Alexey Artemov

Senior Lecturer
HSE Faculty of Computer Science
Avatar

Sergey Yudin

Analyst-developer
Yandex
Avatar

Alexander Guschin

Visiting lecturer at HSE, Lecturer at MIPT
HSE Faculty of Computer Science
Avatar

Nikita Kazeev

Researcher
HSE Faculty of Computer Science
Avatar

Andrei Ustyuzhanin

Head of Laboratory for Methods of Big Data Analysis
HSE Faculty of Computer Science
Avatar

Dmitry Ulyanov

Visiting lecturer
HSE Faculty of Computer Science
Avatar

Marios Michailidis

Research Data Scientist
H2O.ai
Avatar

Daniil Polykovskiy

Researcher
HSE Faculty of Computer Science
Avatar

Ekaterina Lobacheva

Senior Lecturer
HSE Faculty of Computer Science
Avatar

Andrei Zimovnov

Senior Lecturer
HSE Faculty of Computer Science
Avatar

Alexander Novikov

Researcher
HSE Faculty of Computer Science
Avatar

Dmitry Altukhov

Visiting lecturer
HSE Faculty of Computer Science
Avatar

Pavel Shvechikov

Researcher at HSE and Sberbank AI Lab
HSE Faculty of Computer Science
Avatar

Anton Konushin

Senior Lecturer
HSE Faculty of Computer Science
Avatar

Anna Kozlova

Team Lead
Yandex
Avatar

Mikhail Trofimov

Visiting lecturer
HSE Faculty of Computer Science
Avatar

Evgeny Sokolov

Senior Lecturer
HSE Faculty of Computer Science
Avatar

Alexander Panin

Lecturer
HSE Faculty of Computer Science
Avatar

Anna Potapenko

Researcher
HSE Faculty of Computer Science

Socios del sector

Industry Partner Logo #0

Acerca de National Research University Higher School of Economics

National Research University - Higher School of Economics (HSE) is one of the top research universities in Russia. Established in 1992 to promote new research and teaching in economics and related disciplines, it now offers programs at all levels of university education across an extraordinary range of fields of study including business, sociology, cultural studies, philosophy, political science, international relations, law, Asian studies, media and communications, IT, mathematics, engineering, and more. Learn more on www.hse.ru...

Preguntas Frecuentes

  • ¡Sí! Para empezar, haz clic en la tarjeta del curso que te interesa e inscríbete. Puedes inscribirte y completar el curso para obtener un certificado que puedes compartir o puedes acceder al curso como oyente para ver los materiales del curso de manera gratuita. Cuando cancelas la suscripción de un curso que forma parte de un programa especializado, se cancela automáticamente la suscripción de todo el programa especializado. Visita el panel del estudiante para realizar un seguimiento de tu progreso.

  • Este curso es completamente en línea, de modo que no necesitas ir a un aula en persona. Puedes acceder a tus lecciones, lecturas y tareas en cualquier momento y cualquier lugar a través de Internet o tu dispositivo móvil.

  • Este programa especializado no otorga crédito universitario, pero algunas universidades pueden aceptar los Certificados del programa especializado para el crédito. Consulta con tu institución para obtener más información.

  • Time to completion can vary based on your schedule, but most learners are able to complete the Specialization in 8-10 months.

  • As prerequisites we assume calculus and linear algebra (especially derivatives, matrices and operations with them), probability theory (random variables, distributions, moments), basic programming in python (functions, loops, numpy), basic machine learning (linear models, decision trees, boosting and random forests). Our intended audience are all people who are already familiar with basic machine learning and want to get a hand-on experience of research and development in the field of modern machine learning.

  • We recommend taking the “Intro to Deep Learning” course first as most of the subsequent courses will build on its material. All other courses can be taken in any order.

  • After completing 7 courses of the Specialization you will be able to:

    Use modern deep neural networks for various machine learning problems with complex inputs;

    Participate in data science competitions and use the most popular and effective machine learning tools;

    Adopt the best practices of data exploration, preprocessing and feature engineering;

    Perform Bayesian inference, understand Bayesian Neural Networks and Variational Autoencoders;

    Use reinforcement learning methods to build agents for games and other environments;

    Solve computer vision problems with a combination of deep models and classical computer vision algorithms;

    Outline state-of-the-art techniques for natural language tasks, such as sentiment analysis, semantic slot filling, summarization, topics detection, and many others;

    Build goal-oriented dialogue agents and train them to hold a human-like conversation;

    Understand limitations of standard machine learning methods and design new algorithms for new tasks.

¿Tienes más preguntas? Visita el Centro de Ayuda al Alumno.